Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Nutr ; 43(2): 357-365, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142480

RESUMEN

BACKGROUND & AIMS: Malnutrition can develop in patients with obesity suffering from acute or chronic illness or after obesity surgery, promoting sarcopenic obesity. A better understanding of this pathophysiology and the development of new therapeutics for chronic diseases, that are often complicated with malnutrition and obesity, justify the development of new animal experimental models close to the human physiology. This study aims to characterize the effects of obesity and underfeeding on Yucatan obese minipigs, assessing its validity as a preclinical model for obesity-related malnutrition. METHODS: Sixteen 30-month-old Yucatan minipigs were divided into two groups for 8 weeks: a standard diet group (ST, n = 5) and an obesogenic diet group (OB, n = 11). After 8 weeks, the OB group was further divided into two sub-groups: a standard diet group (OB-ST, n = 5) and a low-calorie/low-protein diet group (OB-LC/LP, n = 6) for 8 weeks. Body composition by CT-Scan and blood parameters were monitored, and trapezius muscle biopsies were collected to analyse signaling pathways involved in protein turnover and energy metabolism. RESULTS: At W8, OB-ST animals exhibited significantly higher body weight (+37.7%, p = 0.03), muscle mass (+24.9%, p = 0.02), and visceral fat (+192.0%, p = 0.03) compared to ST. Trapezius cross sectional area (CSA) normalized to body weight was lower in OB-ST animals (-15.02%, p = 0.017). At W16, no significant changes were observed in protein turnover markers, although REDD1 increased in OB-ST (96.4%, p = 0.02). After 8 weeks of low-caloric/low protein diet, OB-LC/LP showed decreased body weight (-9.8%, p = 0.03), muscle mass (-6.5%, p = 0.03), and visceral fat (-41.5%, p = 0.03) compared to OB-ST animals. Trapezius fiber CSA significantly decreased in OB-LC/LP (-36.1%, p < 0.0001) and normalized to body weight (-25.4%, p < 0.0001), combined to higher ubiquitinated protein content (+38.3%, p = 0.02). CONCLUSION: Our data support that the Yucatan minipig model mimics nutritional and skeletal muscle phenotypes observed in obese patients, with or without protein-energy malnutrition. It also reproduces muscle atrophy observed in chronic diseases or post-obesity surgery, making it a promising preclinical model for obesity-related malnutrition.


Asunto(s)
Desnutrición , Enfermedades Musculares , Humanos , Porcinos , Animales , Porcinos Enanos , Obesidad , Peso Corporal , Desnutrición/complicaciones , Enfermedades Musculares/complicaciones , Enfermedad Crónica
2.
FASEB J ; 37(4): e22853, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939304

RESUMEN

Obesity is characterized by systemic low-grade inflammation associated with disturbances of intestinal homeostasis and microbiota dysbiosis. Mitochondrial metabolism sustains epithelial homeostasis by providing energy to colonic epithelial cells (CEC) but can be altered by dietary modulations of the luminal environment. Our study aimed at evaluating whether the consumption of an obesogenic diet alters the mitochondrial function of CEC in mice. Mice were fed for 22 weeks with a 58% kcal fat diet (diet-induced obesity [DIO] group) or a 10% kcal fat diet (control diet, CTRL). Colonic crypts were isolated to assess mitochondrial function while colonic content was collected to characterize microbiota and metabolites. DIO mice developed obesity, intestinal hyperpermeability, and increased endotoxemia. Analysis of isolated colonic crypt bioenergetics revealed a mitochondrial dysfunction marked by decreased basal and maximal respirations and lower respiration linked to ATP production in DIO mice. Yet, CEC gene expression of mitochondrial respiration chain complexes and mitochondrial dynamics were not altered in DIO mice. In parallel, DIO mice displayed increased colonic bile acid concentrations, associated with higher abundance of Desulfovibrionaceae. Sulfide concentration was markedly increased in the colon content of DIO mice. Hence, chronic treatment of CTRL mouse colon organoids with sodium sulfide provoked mitochondrial dysfunction similar to that observed in vivo in DIO mice while acute exposure of isolated mitochondria from CEC of CTRL mice to sodium sulfide diminished complex IV activity. Our study provides new insights into colon mitochondrial dysfunction in obesity by revealing that increased sulfide production by DIO-induced dysbiosis impairs complex IV activity in mouse CEC.


Asunto(s)
Dieta Alta en Grasa , Disbiosis , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis/metabolismo , Obesidad/metabolismo , Sulfuros/metabolismo , Mitocondrias/metabolismo , Ratones Endogámicos C57BL
3.
Front Nutr ; 9: 976042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211510

RESUMEN

Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow's milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.

4.
Clin Nutr ; 41(10): 2077-2086, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063575

RESUMEN

BACKGROUND & AIMS: Severe malnutrition exposes patients to adverse outcomes and a higher mortality risk. The Yucatan minipig, closer to human physiology than murine models could be a pertinent and innovative experimental model for studying the physiopathology and consequences of severe malnutrition. The present study aimed to determine whether a low calorie/low protein diet (LC/LP) can reproduce marasmus malnutrition in minipigs, and to characterize body composition, gut microbiota, malnutrition-related blood parameters, and histological and molecular skeletal muscle patterns. METHODS: Eleven Yucatan minipigs were subjected to two different diets: a standard control diet (ST) (n = 5) and a LC/LP diet (n = 6). LC/LP animals daily received 50% of an isocaloric low-protein diet (10.37 MJ/kg, 8.6% protein). Body composition was measured by computed tomography (CT-scan) before (T0) and after 8 weeks of diet (T8). Trapezius and biceps femoris muscles were sampled at the end of protocol to perform histological and molecular analyses. Gut microbiota composition were was also analyzed at T0 and T8 in fecal samples. RESULTS: Eight weeks of LC/LP diet significantly reduced body weight (-12.3 ± 9.5%, P = 0.03) and gut microbiota richness (i.e. number of observed species) (-10.4 ± 8.3%, P = 0.014) compared to baseline. After 8 weeks, LC/LP animals exhibited a significant reduction of retroperitoneal fat and skeletal muscle surface areas (P = 0.03 and P = 0.047, respectively), whereas these parameters remained unchanged in ST animals. These reductions were associated with lower muscle fiber cross-sectional area (CSA) in trapezius (P < 0.001) and biceps femoris (P = 0.003) in LC/LP animals compared to ST. LC/LP diet promoted an increase of AMP kinase phosphorylation in trapezius and biceps femoris (P = 0.05), but did not affect cytochrome c and COX IV protein content, markers of mitochondrial content. Gene and proteins involved in ubiquitin-proteasome system and apoptosis remained unchanged after 8 weeks of LC/LP diet both in trapezius and biceps femoris. CONCLUSION: All these findings support that this experimental minipig model of severe malnutrition is valid to mimic pathophysiological changes occurring in human protein-energy marasmus malnutrition and muscle atrophy associated with malnutrition, as observed in patients with secondary sarcopenia.


Asunto(s)
Desnutrición , Desnutrición Proteico-Calórica , Adenilato Quinasa , Animales , Citocromos c , Dieta con Restricción de Proteínas , Humanos , Desnutrición/complicaciones , Ratones , Complejo de la Endopetidasa Proteasomal , Desnutrición Proteico-Calórica/metabolismo , Porcinos , Porcinos Enanos , Ubiquitinas
5.
Front Microbiol ; 13: 904758, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847080

RESUMEN

Background and Objectives: Patients with Hirschsprung's disease are at risk of developing Hirschsprung-associated enterocolitis, especially in the first 2 years of life. The pathophysiology of this inflammatory disease remains unclear, and intestinal dysbiosis has been proposed in the last decade. The primary objective of this study was to evaluate in a large cohort if Hirschsprung-associated enterocolitis was associated with alterations of fecal bacterial composition compared with HD without enterocolitis in different age groups. Methods: We analyzed the fecal microbiota structure of 103 Hirschsprung patients from 3 months to 16 years of age, all of whom had completed definitive surgery for rectosigmoid Hirschsprung. 16S rRNA gene sequencing allowed us to compare the microbiota composition between Hirschsprung's disease patients with (HAEC group) or without enterocolitis (HD group) in different age groups (0-2, 2-6, 6-12, and 12-16 years). Results: Richness and diversity increased with age group but did not differ between HD and HAEC patients, irrespective of the age group. Relative abundance of Actinobacteria was lower in HAEC than in HD patients under 2 years of age (-66%, P = 0.045). Multivariate analysis by linear models (MaAsLin) considering sex, medications, birth mode, breast-feeding, and the Bristol stool scale, as well as surgery parameters, highlighted Flavonifractor plautii and Eggerthella lenta, as well as Ruminococcus gnavus group, as positively associated with Hirschsprung-associated enterocolitis in the 0-2 years age group. Conclusion: Hirschsprung-associated enterocolitis was associated with features of intestinal dysbiosis in infants (0-2 years) but not in older patients. This could explain the highest rate of enterocolitis in this age group. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02857205, MICROPRUNG, NCT02857205, 02/08/2016.

6.
J Pediatr Surg ; 56(2): 337-345, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32680586

RESUMEN

BACKGROUND: Hirschsprung-associated enterocolitis physiopathology likely involves disturbed interactions between gut microbes and the host during the early neonatal period. Our objective was to create a neonatal porcine model of iatrogenic aganglionosis to evaluate the impact of the enteric nervous system (ENS) on microbiota and intestinal barrier postnatal development. METHODS: Under general anesthesia, the rectosigmoid serosa of 5-day-old suckling piglets was exposed to 0.5% benzalkonium chloride solution (BAC, n = 7) or saline (SHAM, n = 5) for 1 h. After surgery, animals returned to their home-cage with the sow and littermates and were studied 21 days later. RESULTS: BAC treatment induced partial aganglionosis with absence of myenteric plexus and reduced surface area of submucosal plexus ganglia (-58%, P < 0.05) in one third of the rectosigmoid circumference. Epithelial permeability of this zone was increased (conductance +63%, FITC-dextran flux +386%, horseradish-peroxidase flux +563%, P < 0.05). Tight junction protein remodeling was observed with decreased ZO-1 (-95%, P < 0.05) and increased claudin-3 and e-cadherin expressions (+197% and 61%, P < 0.05 and P = 0.06, respectively). BAC piglets harbored greater abundance of proinflammatory bacteria (Bilophila, Fusobacterium) compared to SHAM in the rectosigmoid lumen. CONCLUSIONS: This large animal model demonstrates that hypoganglionosis is associated with dramatic defects of gut barrier function and establishment of proinflammatory bacteria.


Asunto(s)
Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Microbiota , Animales , Femenino , Enfermedad de Hirschsprung/etiología , Enfermedad Iatrogénica , Modelos Animales , Porcinos
7.
Neurosci Lett ; 739: 135395, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32950568

RESUMEN

Changes in microglial development and morphology can be induced by inflammatory conditions and associated with eating or mood disorders, such as hyperphagia or depression. In a previous paper in the minipig model, we showed that maternal Western diet during gestation and lactation decreased hippocampus neurogenesis and food-rewarded cognitive abilities in the progeny. Whether these alterations are concomitant with a central inflammatory process in brain structures involved in learning and memory (hippocampus, HPC), cognitive (prefrontal cortex, PFC), or hedonic (orbitofrontal cortex, OFC) control of food intake is still unknown. In the present study, Yucatan minipigs (Sus scrofa) sows were exposed to two different diets during gestation and lactation (standard, SD N = 7 vs. Western diet, WD N = 9). Iba1 is a calcium-binding protein specifically expressed in microglia in the brain, which plays an important role in the regulation of the microglia function. Iba1 expression was examined by immunohistochemical analyses in the PFC, OFC and HPC of piglets. The density of microglial cells, as well as their morphology, were assessed in order to have an indirect insight of microglial cell activation state possibly in relationship with neuroinflammation. The density of Iba1-positive cells was higher in the PFC but not in the HPC of WD compared to SD piglets (p < 0.001). In the HPC, anterior and dorsolateral PFC, WD piglets had more unipolar cells, contrary to SD that had more multipolar cells (P < 0.0001). Opposite effects were observed in the OFC, with SD presenting more unipolar (P < 0.001) microglial cells compared to WD. We showed here that maternal diet during pregnancy and lactation had significant effects on morphological changes of microglial cells in the offspring, and that these effects differed between the HPC and PFC, suggesting different response mechanisms to the early nutritional environment.


Asunto(s)
Dieta Occidental , Hipocampo/fisiología , Microglía/fisiología , Corteza Prefrontal/fisiología , Animales , Recuento de Células , Femenino , Hipocampo/citología , Lactancia , Microglía/citología , Corteza Prefrontal/citología , Embarazo , Porcinos , Porcinos Enanos
8.
Front Behav Neurosci ; 13: 161, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379533

RESUMEN

Psychological chronic stress is an important risk factor for major depressive disorder, of which consequences have been widely studied in rodent models. This work aimed at describing a pig model of chronic stress based on social isolation, environmental impoverishment and unpredictability. Three groups of animals of both sexes were constituted. Two were exposed to the psychosocial stressors while receiving (SF, n = 12) or not (SC, n = 22) the antidepressant fluoxetine, and a third group (NSC, n = 22) remained unstressed. Animals were observed in home pens and during dedicated tests to assess resignation and anxiety-like behaviors. Brain structure and function were evaluated via proton MRS and fMRI. Hippocampal molecular biology and immunodetection of cellular proliferation (Ki67+) and neuron maturation (DCX+) in the dentate gyrus were also performed. Salivary cortisol, fecal short-chain fatty acids (SCFAs), and various plasmatic and intestinal biomarkers were analyzed. Compared to NSC, SC animals showed more resignation (p = 0.019) and had a higher level of salivary cortisol (p = 0.020). SC brain responses to stimulation by a novel odor were lower, similarly to their hippocampal neuronal density (p = 0.015), cellular proliferation (p = 0.030), and hippocampal levels of BDNF and 5-HT1AR (p = 0.056 and p = 0.007, respectively). However, the number of DCX+ cells was higher in the ventral dentate gyrus in this group (p = 0.025). In addition, HOMA-IR was also higher (p < 0.001) and microbiota fermentation activity was lower (SCFAs, SC/NSC: p < 0.01) in SC animals. Fluoxetine partially or totally reversed several of these effects. Exposure to psychosocial stressors in the pig model induced effects consistent with the human and rodent literature, including resignation behavior and alterations of the HPA axis and hippocampus. This model opens the way to innovative translational research exploring the mechanisms of chronic stress and testing intervention strategies with good face validity related to human.

9.
FASEB J ; 32(4): 2160-2171, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29242276

RESUMEN

Butyrate can improve gut functions, whereas histone deacetylase inhibitors might alleviate neurocognitive alterations. Our aim was to assess whether oral butyrate could modulate brain metabolism and plasticity and if this would relate to gut function. Sixteen pigs were subjected to sodium butyrate (SB) supplementation via beverage water or water only [control (C)]. All pigs had blood sampled after 2 and 3 wk of treatment, and were subjected to a brain positron emission tomography after 3 wk. Animals were euthanized after 4 wk to sample pancreas, intestine, and brain for gut physiology and anatomy measurements, as well as hippocampal histology, Ki67, and doublecortin (DCX) immunohistochemistry. SB compared with C treatment triggered basal brain glucose metabolism changes in the nucleus accumbens and hippocampus ( P = 0.003), increased hippocampal granular cell layer volume ( P = 0.006), and neurogenesis (Ki67: P = 0.026; DCX: P = 0.029). After 2 wk of treatment, plasma levels of glucose, insulin, lactate, glucagon-like peptide 1, and peptide tyrosine tyrosine remained unchanged. After 3 wk, plasma levels of lactate were lower in SB compared with C animals ( P = 0.028), with no difference for glucose and insulin. Butyrate intake impacted very little gut anatomy and function. These results demonstrate that oral SB impacted brain functions with little effects on the gut.-Val-Laillet, D., Guérin, S., Coquery, N., Nogret, I., Formal, M., Romé, V., Le Normand, L., Meurice, P., Randuineau, G., Guilloteau, P., Malbert, C.-H., Parnet, P., Lallès, J.-P., Segain, J.-P. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs.


Asunto(s)
Ácido Butírico/farmacología , Hipocampo/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/farmacología , Intestinos/efectos de los fármacos , Neurogénesis , Administración Oral , Animales , Glucemia/metabolismo , Ácido Butírico/administración & dosificación , Ácido Butírico/efectos adversos , Femenino , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Antagonistas de los Receptores Histamínicos/administración & dosificación , Antagonistas de los Receptores Histamínicos/efectos adversos , Insulina/sangre , Intestinos/fisiología , Ácido Láctico/sangre , Porcinos
10.
FASEB J ; 31(5): 2037-2049, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28167496

RESUMEN

A suboptimal early nutritional environment (i.e., excess of energy, sugar, and fat intake) can increase susceptibility to diseases and neurocognitive disorders. The purpose of this study was to investigate in nonobese Yucatan minipigs (Sus scrofa) the impact of maternal diet [standard diet (SD) vs. Western diet (WD)] during gestation and 25 d of lactation on milk composition, blood metabolism, and microbiota activity of sows (n = 17) and their piglets (n = 65), and on spatial cognition (n = 51), hippocampal plasticity (n = 17), and food preferences/motivation (n = 51) in the progeny. Milk dry matter and lipid content, as well as plasma total cholesterol and free fatty acid (FFA) concentrations (P < 0.05) were higher in WD than in SD sows. Microbiota activity decreased in both WD sows and 100-d-old piglets (P < 0.05 or P < 0.10, depending on short-chain FAs [SCFAs]). At weaning [postnatal day (PND) 25], WD piglets had increased blood triglyceride and FFA levels (P < 0.01). Both SD and WD piglets consumed more of a known SD than an unknown high-fat and -sucrose (HFS) diet (P < 0.0001), but were quicker to obtain HFS rewards compared with SD rewards (P < 0.01). WD piglets had higher working memory (P = 0.015) and reference memory (P < 0.001) scores, which may reflect better cognitive abilities in the task context and a higher motivation for the food rewards. WD piglets had a smaller hippocampal granular cell layer (P = 0.03) and decreased neurogenesis (P < 0.005), but increased cell proliferation (P < 0.001). A maternal WD during gestation and lactation, even in the absence of obesity, has significant consequences for piglets' blood lipid levels, microbiota activity, gut-brain axis, and neurocognitive abilities after weaning.-Val-Laillet, D., Besson, M., Guérin, S., Coquery, N., Randuineau, G., Kanzari, A., Quesnel, H., Bonhomme, N., Bolhuis, J. E., Kemp, B., Blat, S., Le Huërou-Luron, I., Clouard, C. A maternal Western diet during gestation and lactation modifies offspring's microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs.


Asunto(s)
Cognición/fisiología , Dieta Occidental , Hipocampo/metabolismo , Lactancia/fisiología , Lípidos/sangre , Microbiota/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Animales Lactantes , Suplementos Dietéticos , Femenino , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Leche/metabolismo , Porcinos
11.
PLoS One ; 7(1): e30616, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22291999

RESUMEN

Intrauterine growth restriction (IUGR) is closely linked with metabolic diseases, appetite disorders and obesity at adulthood. Leptin, a major adipokine secreted by adipose tissue, circulates in direct proportion to body fat stores, enters the brain and regulates food intake and energy expenditure. Deficient leptin neuronal signalling favours weight gain by affecting central homeostatic circuitry. The aim of this study was to determine if leptin resistance was programmed by perinatal nutritional environment and to decipher potential cellular mechanisms underneath.We clearly demonstrated that 5 months old IUGR rats develop a decrease of leptin sentivity, characterized by no significant reduction of food intake following an intraperitoneal injection of leptin. Apart from the resistance to leptin injection, results obtained from IUGR rats submitted to rapid catch-up growth differed from those of IUGR rats with no catch-up since we observed, for the first group only, fat accumulation, increased appetite for food rich in fat and increased leptin synthesis. Centrally, the leptin resistant state of both groups was associated with a complex and not always similar changes in leptin receptor signalling steps. Leptin resistance in IUGR rats submitted to rapid catch-up was associated with alteration in AKT and mTOR pathways. Alternatively, in IUGR rats with no catch-up, leptin resistance was associated with low hypothalamic expression of LepRa and LepRb. This study reveals leptin resistance as an early marker of metabolic disorders that appears before any evidence of body weight increase in IUGR rats but whose mechanisms could depend of nutritional environment of the perinatal period.


Asunto(s)
Sistema Nervioso Central/metabolismo , Metabolismo Energético/fisiología , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/rehabilitación , Crecimiento y Desarrollo/fisiología , Leptina/metabolismo , Animales , Animales Recién Nacidos , Sistema Nervioso Central/fisiología , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/fisiología , Metabolismo Energético/genética , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Crecimiento y Desarrollo/genética , Homeostasis/genética , Homeostasis/fisiología , Leptina/genética , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
12.
J Neurosci Methods ; 192(1): 102-9, 2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20692291

RESUMEN

We used high-magnetic field (4.7 T) magnetic resonance imaging (MRI) to build the first high-resolution (100 microm x 150 microm x 100 microm) three-dimensional (3D) digital atlas in stereotaxic coordinates of the brain of a female domestic pig (Sus scrofa domesticus). This atlas was constructed from one hemisphere which underwent a symmetrical transformation through the midsagittal plane. Concomitant construction of a 3D histological atlas based on the same scheme facilitated control of deep brain structure delimitation and enabled cortical mapping to be achieved. The atlas contains 178 individual cerebral structures including 42 paired and 9 single deep brain structures, 5 ventricular system areas, 6 paired deep cerebellar nuclei, 12 cerebellar lobules and 28 cortical areas per hemisphere. Given the increasing importance of pig brains in medical research, this atlas should be a useful tool for intersubject normalization in anatomical imaging as well as for precisely localizing brain areas in functional MR studies or electrode implantation trials. The atlas can be freely downloaded from our institution's Website.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Animales , Femenino , Lateralidad Funcional , Ilustración Médica , Técnicas Estereotáxicas , Sus scrofa/anatomía & histología
13.
Biol Reprod ; 78(5): 939-46, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18199883

RESUMEN

The present study was designed to obtain new insights into fish gonadal sex differentiation by comparing the effects of two different masculinizing treatments on some candidate gene expression profiles. Masculinization was induced in rainbow trout, Oncorhynchus mykiss, genetic all-female populations using either an active fish androgen (11betaAnd, 11beta-hydroxyandrostenedione) or an aromatase inhibitor (ATD, 1,4,6-androstatriene-3,17-dione). The expression profiles of 100 candidate genes were obtained by real-time RT-PCR, and 46 profiles displayed a significant differential expression between control populations (males and females) and ATD/11betaAnd-treated populations. These expression profiles were grouped in four temporally correlated expression clusters. Among the common responses shared by the two masculinizing treatments, the inhibition of some early female differentiating genes (cyp19a1, foxl2a, fst, and fshb) appears to be crucial for effective masculinization, suggesting that these genes act together via a short regulation loop to maintain high sex-specific ovarian expression of cyp19a1. This simultaneous down-regulation of female-specific genes could be triggered by some testicular genes, such as dmrt1, nr0b1 (also known as dax1), and pdgfra, which are quickly up-regulated by the two masculinizing treatments. In contrast to 11betaAnd, ATD quickly restored the expression levels of steroidogenesis related genes (cyp11b2.1, cyp11b2.2, hsd3b1, cyp17a, star, and nr5a1) and some Sertoli cell markers (sox9a2 and amh) to the expression levels observed during control testicular differentiation. This demonstrates that these genes are probably not needed for active masculinization and that the inhibition of endogenous estrogen synthesis produces a much more complete and specific testicular pattern of gene expression than that observed following androgen-induced masculinization.


Asunto(s)
Andrógenos/farmacología , Estrógenos/metabolismo , Oncorhynchus mykiss/fisiología , Ovario/fisiología , Diferenciación Sexual/fisiología , Testículo/fisiología , Androstatrienos/farmacología , Androstenodiona/análogos & derivados , Androstenodiona/farmacología , Animales , Aromatasa/genética , Aromatasa/metabolismo , Receptor Nuclear Huérfano DAX-1 , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Genotipo , Masculino , Oncorhynchus mykiss/genética , Ovario/efectos de los fármacos , Fenotipo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Diferenciación Sexual/genética , Testículo/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Dev Dyn ; 236(8): 2198-206, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17584856

RESUMEN

Early differentiation in rainbow trout gonads was investigated by expression profiling and in situ hybridization (ISH). Expression of cyp19a1 and fst in females and sox9a1 in males were sexually dimorphic between 32 to 35 days post-fertilization (dpf). After 35 dpf, the differentiation proceeded with sexually dimorphic profiles for sox9a2, dmrt1, cyp11b2.1, amh in males and foxl2a, foxl2b, hsd3b1, inha in females. cyp17a1, cyp11a1, star, nr5a1b increased only after 40 dpf in both sexes with a slightly higher expression in females. cyp19a1 expression was localized in a cluster of somatic cells in the ventral side of female gonads, and sox9a2 and amh in somatic cells surrounding the germ cells, at 28 dpf and thereafter, both in male and female gonads. cyp11b2.1, cyp17a1, and cyp11a1 expressions were only detected in scattered somatic cells in males after 46 dpf. This confirms the early implication of cyp19a1 in trout ovarian differentiation and suggests that early testicular differentiation does not need androgen production.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oncorhynchus mykiss/fisiología , Diferenciación Sexual/genética , Animales , Aromatasa , Femenino , Perfilación de la Expresión Génica , Gónadas/crecimiento & desarrollo , Humanos , Hibridación in Situ , Masculino , Oncorhynchus mykiss/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...