Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Genomics ; 55(4): 168-178, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878491

RESUMEN

Non-small cell lung cancers (NSCLCs) demonstrate intrinsic resistance to cell death, even after chemotherapy. Previous work suggested defective nuclear translocation of active caspase-3 in observed resistance to cell death. We have identified mitogen-activated protein kinase-activated protein kinase 2 (MK2; encoded by the gene MAPKAPK2) is required for caspase-3 nuclear translocation in the execution of apoptosis in endothelial cells. The objective was to determine MK2 expression in NSCLCs and the association between MK2 and clinical outcomes in patients with NSCLC. Clinical and MK2 mRNA data were extracted from two demographically distinct NSCLC clinical cohorts, North American (The Cancer Genome Atlas, TCGA) and East Asian (EA). Tumor responses following first round of chemotherapy were dichotomized as clinical response (complete response, partial response, and stable disease) or progression of disease. Multivariable survival analyses were performed using Cox proportional hazard ratios and Kaplan-Meier curves. NSCLC exhibited lower MK2 expression than SCLC cell lines. In patients, lower tumor MK2 transcript levels were observed in those presenting with late-stage NSCLC. Higher MK2 expression was associated with clinical response following initial chemotherapy and independently associated with improved 2-yr survival in two distinct cohorts, 0.52 (0.28-0.98) and 0.1 (0.01-0.81), TCGA and EA, respectively, even after adjusting for common oncogenic driver mutations. Survival benefit of higher MK2 expression was unique to lung adenocarcinoma when comparing across various cancers. This study implicates MK2 in apoptosis resistance in NSCLC and suggests prognostic value of MK2 transcript levels in patients with lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Caspasa 3/uso terapéutico , Células Endoteliales , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
2.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L700-L711, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36976920

RESUMEN

We have previously identified mitogen-activated protein kinase-activated protein kinase 2 (MK2) is required for caspase-3 nuclear translocation in the execution of apoptosis; however, little is known of the underlying mechanisms. Therefore, we sought to determine the role of kinase and nonkinase functions of MK2 in promoting nuclear translocation of caspase-3. We identified two non-small cell lung cancer cell lines for use in these experiments based on low MK2 expression. Wild-type, enzymatic and cellular localization mutant MK2 constructs were expressed using adenoviral infection. Cell death was evaluated by flow cytometry. In addition, cell lysates were harvested for protein analyses. Phosphorylation of caspase-3 was determined using two-dimensional gel electrophoresis followed by immunoblotting and in vitro kinase assay. Association between MK2 and caspase-3 was evaluated using proximity-based biotin ligation assays and co-immunoprecipitation. Overexpression of MK2 resulted in nuclear translocation of caspase-3 and caspase-3-mediated apoptosis. MK2 directly phosphorylates caspase-3; however, phosphorylation status of caspase-3 or MK2-dependent phosphorylation of caspase-3 did not alter caspase-3 activity. The enzymatic function of MK2 was dispensable in nuclear translocation of caspase-3. MK2 and caspase-3 associated together and a nonenzymatic function of MK2, chaperoned nuclear trafficking, is required for caspase-3-mediated apoptosis. Taken together, our results demonstrate a nonenzymatic role for MK2 in the nuclear translocation of caspase-3. Furthermore, MK2 may function as a molecular switch in regulating the transition between the cytosolic and nuclear functions of caspase-3.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Apoptosis , Caspasa 3/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
3.
J Clin Med ; 11(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35683585

RESUMEN

Background: Lupus nephritis (LN) is a prevalent and severe complication of systemic lupus erythematosus (SLE). Non-invasive diagnostics are limited, and current therapies have inadequate response rates. Expression of the chemokine Interferon-γ-induced protein 10 (IP-10) is regulated by Interferon-γ signaling and NF-κB, and its molecular activity and enhanced urine concentrations are implicated in LN, but its utility as a diagnostic marker and association with demographic, clinical, or pathologic features is not defined. Methods: 38 LN patients and 11 patients with non-LN glomerular diseases (GD) with active disease were included. Eighteen of the LN patients had achieved remission at one follow-up during the study time. Serum and urine were obtained from these samples, and the IP-10 levels were measured. Results: Serum and urine IP-10 levels are significantly enhanced in LN patients with active disease as compared with normal individuals (serum average 179.7 pg/mL vs. 7.2 pg/mL, p < 0.0001; urine average 28.7 pg/mg vs. 1.6 pg/mg, p = 0.0019) and patients with other forms of glomerular disease (serum average 179.7 pg/mL vs. 84.9 pg/mL, p = 0.0176; urine average 28.7 pg/mg vs. 0.18 pg/mg, p = 0.0011). Urine IP-10 levels are significantly higher in patients with proliferative LN (PLN) than those with membranous LN (MLN) (average 32.8 pg/mg vs. 7.6 pg/mg, p = 0.0155). Urine IP-10 levels are also higher in MLN versus primary membranous nephropathy (MN) (average 7.6 pg/mg vs. 0.2 pg/mg, p = 0.0193). Importantly, serum IP-10 levels remain elevated during active LN and LN remission, but urine IP-10 levels are decreased from active LN to remission in 72% of our patients. Lastly, serum, but not urine IP-10 levels are significantly higher in African American than White American LN patients in active LN (average 227.8 pg/mL vs. 103.4 pg/mL, p = 0.0309) and during LN remission (average 254.6 pg/mL vs. 89.2 pg/mL, p = 0.0399). Conclusions: Our findings suggest that serum and urine IP-10 measurements provide promising tests for monitoring LN activity, differentiation between classifications of LN, and differentiation between LN and other forms of glomerular disease. We also conclude that further assessment of elevated IP-10 levels in the serum and urine of high-risk populations (i.e., African American) could be beneficial in determining why many of these patients have worse outcomes and are non-responsive to standard therapeutics.

4.
Front Immunol ; 13: 879686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711435

RESUMEN

Neutrophils play a significant role in determining disease severity following SARS-CoV-2 infection. Gene and protein expression defines several neutrophil clusters in COVID-19, including the emergence of low density neutrophils (LDN) that are associated with severe disease. The functional capabilities of these neutrophil clusters and correlation with gene and protein expression are unknown. To define host defense and immunosuppressive functions of normal density neutrophils (NDN) and LDN from COVID-19 patients, we recruited 64 patients with severe COVID-19 and 26 healthy donors (HD). Phagocytosis, respiratory burst activity, degranulation, neutrophil extracellular trap (NET) formation, and T-cell suppression in those neutrophil subsets were measured. NDN from severe/critical COVID-19 patients showed evidence of priming with enhanced phagocytosis, respiratory burst activity, and degranulation of secretory vesicles and gelatinase and specific granules, while NET formation was similar to HD NDN. COVID LDN response was impaired except for enhanced NET formation. A subset of COVID LDN with intermediate CD16 expression (CD16Int LDN) promoted T cell proliferation to a level similar to HD NDN, while COVID NDN and the CD16Hi LDN failed to stimulate T-cell activation. All 3 COVID-19 neutrophil populations suppressed stimulation of IFN-γ production, compared to HD NDN. We conclude that NDN and LDN from COVID-19 patients possess complementary functional capabilities that may act cooperatively to determine disease severity. We predict that global neutrophil responses that induce COVID-19 ARDS will vary depending on the proportion of neutrophil subsets.


Asunto(s)
COVID-19 , Trampas Extracelulares , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos/metabolismo , Estallido Respiratorio , SARS-CoV-2
5.
Life Sci ; 287: 120092, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34715142

RESUMEN

AIMS: Transforming growth factor-ß (TGF-ß) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-ß treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells. MAIN METHODS: HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 µM), SB203580 (1 µM), PD98059 (25 µM) and SP600125 (10 µM), respectively, followed by treatment with/without TGF-ß (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-ß on JNK MAPK phosphorylation (pJNK) was examined. KEY FINDINGS: We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-ß treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-ß-induced pSer82Hsp27, fibronectin and connective tissue growth factor (CTGF) expression while preserving NF-E2 expression. Blockade of JNK MAPK inhibited TGF-ß-induced CTGF expression without preserving NF-E2 expression. MG132 treatment prevented TGF-ß-induced pJNK in HK-11 cells and in type 1 diabetic OVE26 mouse kidneys, demonstrating that TGF-ß- and diabetes-induced pJNK occurs downstream of proteasome activation. A direct role for NF-E2 in modulating pJNK activation was demonstrated by NF-E2 over-expression. SIGNIFICANCE: ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Subunidad p45 del Factor de Transcripción NF-E2/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Antracenos/farmacología , Línea Celular Transformada , Inhibidores de Cisteína Proteinasa/farmacología , Femenino , Fibrosis , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Leupeptinas/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Transgénicos
6.
J Cell Mol Med ; 25(5): 2342-2355, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33523554

RESUMEN

Transcription factor Krüppel-like factor 5 (KLF5) is a member of the Krüppel-like factors' (KLFs) family. KLF5 regulates a number of cellular functions, such as apoptosis, proliferation and differentiation. Therefore, KLF5 can play a role in many diseases, including, cancer, cardiovascular disease and gastrointestinal disorders. An important role for KLF5 in the kidney was recently reported, such that KLF5 regulated podocyte apoptosis, renal cell proliferation, tubulointerstitial inflammation and renal fibrosis. In this review, we have summarized the available information in the literature with a brief description on how transcriptional, post-transcriptional and post-translational modifications of KLF5 modulate its function in a variety of organs including the kidney with a focus of its importance on the pathogenesis of various kidney diseases. Furthermore, we also have outlined the current and possible mechanisms of KLF5 activation in kidney diseases. These studies suggest a need for more systemic investigations, particularly for generation of animal models with renal cell-specific deletion or overexpression of KLF5 gene to examine direct contributions of KLF5 to various kidney diseases. This will promote further experimentation in the development of therapies to prevent or treat various kidney diseases.


Asunto(s)
Susceptibilidad a Enfermedades , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Apoptosis , Biomarcadores , Proliferación Celular , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Enfermedades Renales/patología , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , Transducción de Señal
7.
Life Sci ; 254: 117783, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413404

RESUMEN

AIMS: This study aimed to examine the anti-fibrotic role of Nuclear Factor-Erythroid derived 2 (NF-E2) in human renal tubule (HK-11) cells and in type 1 and type 2 diabetic (T1D, T2D) mouse kidneys. MAIN METHODS: Anti-fibrotic effects of NF-E2 were examined in transforming growth factor-ß (TGF-ß) treated HK-11 cells by over-expressing/silencing NF-E2 expression and determining its effects on profibrotic signaling. NF-E2 proteasomal degradation was confirmed by proteasome inhibition in HK-11 cells and diabetic mice. Clinical relevance of changes in NF-E2 expression to fibrotic changes in the kidney were assessed in T1D and T2D mouse kidneys. KEY FINDINGS: NF-E2 expression was significantly decreased in TGF-ß treated HK-11 cells and in kidneys of diabetic mice with concurrent increase in expression of fibrotic proteins. TGF-ß treatment of HK-11 cells did not inhibit NF-E2 mRNA expression, suggesting that the post-translational changes may contribute to NF-E2 protein degradation. The down-regulation of NF-E2 expression was attributed to its proteasomal degradation, as TGF-ß- and diabetes-induced NF-E2 down regulation was prevented by proteasome inhibitor treatment. In HK-11 cells TGF-ß treatment decreased E-cadherin expression and induced pSer82Hsp27/NF-E2 association, likely to promote NF-E2 degradation, as Hsp27 can target proteins to the proteasome. A critical role for NF-E2 in regulation of renal fibrosis was demonstrated as over-expression of NF-E2 or silencing NF-E2 expression, decreased or increased profibrotic proteins in TGF-ß-treated HK-11 cells, respectively. SIGNIFICANCE: NF-E2, a novel anti-fibrotic protein, is down-regulated in diabetic kidneys. Preserving/inducing NF-E2 expression in diabetic kidneys may provide a therapeutic potential to combat DN.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Fibrosis/fisiopatología , Subunidad p45 del Factor de Transcripción NF-E2/fisiología , Animales , Cadherinas/biosíntesis , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Diabetes Mellitus Experimental/genética , Regulación hacia Abajo , Fibrosis/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Riñón/metabolismo , Túbulos Renales/metabolismo , Leupeptinas/farmacología , Masculino , Ratones , Ratones Transgénicos , Subunidad p45 del Factor de Transcripción NF-E2/biosíntesis , Subunidad p45 del Factor de Transcripción NF-E2/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/efectos adversos , Factor de Crecimiento Transformador beta/antagonistas & inhibidores
9.
J Mol Cell Cardiol ; 129: 193-196, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30831134

RESUMEN

Although there is an increasing understanding of the signaling pathways that promote cardiac hypertrophy, negative regulatory factors of this process have received less attention. Increasing evidence indicates that Krüppel-like factor 15 (KLF15) plays an important role in maintaining cardiac function by controlling the transcriptional pathways that regulating cardiac metabolism. Recent studies have also revealed a vital role for KLF15 as an inhibitor of pathological cardiac hypertrophy and fibrosis via its effects on factors such as myocyte enhancer factor 2 (MEF2), GATA-binding protein 4 (GATA4), transforming growth factor-ß (TGF-ß), and myocardin. KLF15 may therefore be an effective therapeutic target for the treatment of heart failure and other cardiovascular diseases. In this review, we focus on the physiological and pathophysiological roles of KLF15 in the heart and the potential mechanisms through which KLF15 is regulated in various cardiac diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Factores de Transcripción de Tipo Kruppel/metabolismo , Miocardio/metabolismo , Animales , Homeostasis , Humanos , Publicaciones
10.
Toxicol Appl Pharmacol ; 370: 93-105, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30876865

RESUMEN

Diabetic nephropathy (DN) is one of the most serious long-term complications of type 2 diabetes (T2D). 4-O-methylhonokiol (MH) is one of the biologically active ingredients extracted from the Magnolia stem bark. In this study, we aim to elucidate whether treatment with MH can ameliorate or slow-down progression of DN in a T2D murine model and, if so, whether the protective response of MH correlates with AMPK-associated anti-oxidant and anti-inflammatory effects. To induce T2D, mice were fed normal diet (ND) or high fat diet (HFD) for 3 months to induce insulin resistance, followed by an intraperitoneal injection of STZ to induce hyperglycemia. Both T2D and control mice received gavage containing vehicle or MH once diabetes onset for 3 months. Once completing 3-month MH treatment, five mice from each group were sacrificed as 3 month time-point. The rest mice in each group were sacrificed 3 months later as 6 month time-point. In T2D mice, the typical DN symptoms were induced as expected, reflected by increased proteinuria, renal lipid accumulation and lipotoxic effects inducing oxidative stress, and inflammatory reactions, and final fibrosis. However, these typical DN changes were significantly prevented by MH treatment for 3 months and even at 3 months post-MH withdrawal. Mechanistically, MH renal-protection from DN may be related to lipid metabolic improvement and oxidative stress attenuation along with increases in AMPK/PGC-1α/CPT1B-mediated fatty acid oxidation and Nrf2/SOD2-mediated anti-oxidative stress. Results showed the preventive effect of MH on the renal oxidative stress and inflammation in DN.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos de Bifenilo/administración & dosificación , Nefropatías Diabéticas/prevención & control , Ácidos Grasos/metabolismo , Lignanos/administración & dosificación , Factor 2 Relacionado con NF-E2/fisiología , Estrés Oxidativo/efectos de los fármacos , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/patología , Dieta Alta en Grasa , Activación Enzimática/efectos de los fármacos , Resistencia a la Insulina , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Fitoterapia
11.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1118-L1126, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30908935

RESUMEN

Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.


Asunto(s)
Caspasa 3/metabolismo , Células Endoteliales/citología , Endotelio Vascular/metabolismo , Mucosa Respiratoria/citología , Uniones Estrechas/efectos de los fármacos , Citoesqueleto de Actina/fisiología , Permeabilidad Capilar/efectos de los fármacos , Caspasa 3/genética , Células Cultivadas , Impedancia Eléctrica , Endotelio Vascular/citología , Humanos , Pulmón/citología , Interferencia de ARN , ARN Interferente Pequeño/genética , Trombina/farmacología
12.
EBioMedicine ; 40: 743-750, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30662001

RESUMEN

Dysregulated Krϋppel-like factor (KLF) gene expression appears in many disease-associated pathologies. In this review, we discuss physiological functions of KLFs in the kidney with a focus on potential pharmacological modulation/therapeutic applications of these KLF proteins. KLF2 is critical to maintaining endothelial barrier integrity and preventing gap formations and in prevention of glomerular endothelial cell and podocyte damage in diabetic mice. KLF4 is renoprotective in the setting of AKI and is a critical regulator of proteinuria in mice and humans. KLF6 expression in podocytes preserves mitochondrial function and prevents podocyte apoptosis, while KLF5 expression prevents podocyte apoptosis by blockade of ERK/p38 MAPK pathways. KLF15 is a critical regulator of podocyte differentiation and is protective against podocyte injury. Loss of KLF4 and KLF15 promotes renal fibrosis, while fibrotic kidneys have increased KLF5 and KLF6 expression. For therapeutic modulation of KLFs, continued screening of small molecules will promote drug discoveries targeting KLF proteins.


Asunto(s)
Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Riñón/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Susceptibilidad a Enfermedades , Endotelio Vascular/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Túbulos Renales/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/química , Podocitos/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
13.
Int J Biol Sci ; 15(1): 239-252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30662363

RESUMEN

Hyperglycemia-induced renal fibrosis causes end-stage renal disease. Clopidogrel, a platelet inhibitor, is often administered to decrease cardiovascular events in diabetic patients. We investigated whether clopidogrel can reduce diabetes-induced renal fibrosis in a streptozotocin-induced type 1 diabetes murine model and fibronectin involvement in this protective response. Diabetic and age-matched controls were sacrificed three months after the onset of diabetes, and additional controls and diabetic animals were further treated with clopidogrel or vehicle for three months. Diabetes induced renal morphological changes and fibrosis after three months. Clopidogrel, administered during the last three months, significantly decreased blood glucose, collagen and fibronectin expression compared to vehicle-treated diabetic mice. Diabetes increased TGF-ß expression, inducing fibrosis via Smad-independent pathways, MAP kinases, and Akt activation at three months but returned to baseline at six months, whereas the expression of fibronectin and collagen remained elevated. Our results suggest that activation of TGF-ß, CTGF, and MAP kinases are early profibrotic signaling events, resulting in significant fibronectin accumulation at the early time point and returning to baseline at a later time point. Akt activation at the three-month time point may serve as an adaptive response in T1D. Mechanisms of clopidogrel therapeutic effect on the diabetic kidney remain to be investigated as this clinically approved compound could provide novel approaches to prevent diabetes-induced renal disease, therefore improving patients' survival.


Asunto(s)
Clopidogrel/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Fibronectinas/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/etiología , Enfermedades Renales/tratamiento farmacológico , Animales , Coagulación Sanguínea/efectos de los fármacos , Western Blotting , Clopidogrel/farmacología , Fibrosis/metabolismo , Inmunohistoquímica , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico
14.
Am J Physiol Renal Physiol ; 315(5): F1484-F1492, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30132343

RESUMEN

We examined the association of urine inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPP2K) with the presence and progression of diabetic kidney disease (DKD) lesions. Urine IPP2K was measured at baseline by quantitative liquid chromatography-mass spectrometry in 215 participants from the Renin-Angiotensin System Study who had type 1 diabetes and were normoalbuminuric and normotensive with normal or increased glomerular filtration rate (GFR). Urine IPP2K was detectable in 166 participants. Participants with IPP2K below the limit of quantification (LOQ) were assigned concentrations of LOQ/√2. All concentrations were then standardized to urine creatinine (Cr) concentration. Kidney morphometric data were available from biopsies at baseline and after 5 yr. Relationships of IPP2K/Cr with morphometric variables were assessed by linear regression after adjustment for age, sex, diabetes duration, hemoglobin A1c, mean arterial pressure, treatment assignment, and, for longitudinal analyses, baseline structure. Baseline mean age was 29.7 yr, mean diabetes duration 11.2 yr, median albumin excretion rate 5.0 µg/min, and mean iohexol GFR 129 ml·min-1·1.73m-2. Higher IPP2K/Cr was associated with higher baseline peripheral glomerular total filtration surface density [Sv(PGBM/glom), tertile 3 vs. tertile 1 ß = 0.527, P = 0.011] and with greater preservation of Sv(PGBM/glom) after 5 yr ( tertile 3 vs. tertile 1 ß = 0.317, P = 0.013). Smaller increases in mesangial fractional volume ( tertile 3 vs. tertile 1 ß = -0.578, P = 0.018) were observed after 5 yr in men with higher urine IPP2K/Cr concentrations. Higher urine IPP2K/Cr is associated with less severe kidney lesions at baseline and with preservation of kidney structure over 5 yr in individuals with type 1 diabetes and no clinical evidence of DKD at baseline.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/orina , Riñón/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/orina , Adulto , Biomarcadores/orina , Biopsia , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Ensayos Clínicos como Asunto , Diabetes Mellitus Tipo 1/diagnóstico , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Espectrometría de Masas , Estudios Multicéntricos como Asunto , Factores de Tiempo , Regulación hacia Arriba , Adulto Joven
15.
Toxicol Lett ; 279: 107-114, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28751209

RESUMEN

Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O2). Hypoxia, at 24h 0.1% O2, induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/enzimología , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Neuronas/enzimología , Estrés Oxidativo , Feocromocitoma/enzimología , Especies Reactivas de Oxígeno/metabolismo , Hipoxia Tumoral , Adenosina Trifosfato/metabolismo , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Células PC12 , Feocromocitoma/genética , Feocromocitoma/patología , Ratas , Transducción de Señal , Factores de Tiempo , Transfección , Vitamina K 3/farmacología
16.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 186-194, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27816562

RESUMEN

BACKGROUND: A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS: Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS: Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE: This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Biomarcadores/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Islotes Pancreáticos/metabolismo , Neuropéptidos/metabolismo , Animales , Estrés del Retículo Endoplásmico/fisiología , Hiperglucemia , Insulina/metabolismo , Ratones , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteómica/métodos , Receptores de Cinasa C Activada , Elementos de Respuesta/fisiología , Proteína Tumoral Controlada Traslacionalmente 1
17.
Int J Mol Sci ; 17(11)2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834824

RESUMEN

Diabetes is strongly associated with systemic inflammation and oxidative stress, but its effect on pulmonary vascular disease and lung function has often been disregarded. Several studies identified restrictive lung disease and fibrotic changes in diabetic patients and in animal models of diabetes. While microvascular dysfunction is a well-known complication of diabetes, the mechanisms leading to diabetes-induced lung injury have largely been disregarded. We described the potential involvement of diabetes-induced platelet-endothelial interactions in perpetuating vascular inflammation and oxidative injury leading to fibrotic changes in the lung. Changes in nitric oxide synthase (NOS) activation and decreased NO bioavailability in the diabetic lung increase platelet activation and vascular injury and may account for platelet hyperreactivity reported in diabetic patients. Additionally, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has been reported to mediate pancreatic islet damage, and is implicated in the onset of diabetes, inflammation and vascular injury. Many growth factors and diabetes-induced agonists act via the JAK/STAT pathway. Other studies reported the contribution of the JAK/STAT pathway to the regulation of the pulmonary fibrotic process but the role of this pathway in the development of diabetic lung fibrosis has not been considered. These observations may open new therapeutic perspectives for modulating multiple pathways to mitigate diabetes onset or its pulmonary consequences.


Asunto(s)
Plaquetas/patología , Diabetes Mellitus/patología , Células Endoteliales/patología , Pulmón/patología , Enfermedades Vasculares Periféricas/patología , Fibrosis Pulmonar/patología , Animales , Plaquetas/metabolismo , Comunicación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Enfermedades Vasculares Periféricas/genética , Enfermedades Vasculares Periféricas/metabolismo , Activación Plaquetaria , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal
18.
Sci Rep ; 6: 34477, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708338

RESUMEN

Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic C. elegans to E. coli producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing C. elegans fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.


Asunto(s)
Amiloide/farmacología , Proteínas Bacterianas/farmacología , Caenorhabditis elegans/metabolismo , Proteínas de Escherichia coli/farmacología , Escherichia coli , Agregación Patológica de Proteínas/inducido químicamente , Agregación Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Ratas , Ratas Endogámicas F344
19.
Lung ; 194(1): 155-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26553025

RESUMEN

PURPOSE: The objective of this study was to measure plasma cytokine levels and blood neutrophil functions as well as clinical outcomes in hospitalized patients with community-acquired pneumonia (CAP) treated with or without macrolide use--a known modulator of inflammatory response. METHODS: Subjects with CAP had peripheral blood analyzed for some neutrophil functions (degranulation of secretory vesicles and specific granules, respiratory burst response and phagocytosis) and ten cytokine levels measured in serum and sputum supernatants. Neutrophil function in healthy volunteers was also measured for reference. Values were measured on the day of enrollment, days 2-4 and 5-7, depending on a patient's length of stay. Early and late clinical outcomes were also evaluated. All values were compared between those treated with or without a macrolide. RESULTS: A total of 40 subjects were in this study; 14 received macrolide treatment, and 26 did not. Neutrophil function in the macrolide group was not significantly different compared to the non-macrolide group. None of the median cytokine levels or IQRs were statistically significant between the groups. However, a trend toward decreased IL-6, IL-8, and IFN-γ levels, and favorable clinical outcomes were present in the macrolide group. CONCLUSIONS: This pilot study showed no statistical difference between cytokine levels or neutrophil activity for CAP patients prescribed a macrolide containing regimen. Considering the trend of lower cytokine levels in the macrolide group when comparing the 5- to 7-day time period with the non-macrolide group, a full study with an appropriate sample size may be warranted.


Asunto(s)
Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Citocinas/sangre , Neutrófilos/fisiología , Neumonía/tratamiento farmacológico , Neumonía/inmunología , Anciano , Degranulación de la Célula , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Infecciones Comunitarias Adquiridas/inmunología , Citocinas/efectos de los fármacos , Femenino , Mortalidad Hospitalaria , Humanos , Interferón gamma/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Tiempo de Internación , Masculino , Persona de Mediana Edad , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Fagocitosis , Proyectos Piloto , Estudios Prospectivos , Estallido Respiratorio
20.
Cell Stress Chaperones ; 21(1): 155-166, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26483256

RESUMEN

Regulation of the endoplasmic reticulum (ER) stress-response pathway during the course of diabetes specifically in renal tubules is unclear. Since tubule cell dysfunction is critical to progression of diabetic nephropathy, this study analyzed markers of ER stress response and ER chaperones at different stages of diabetes and in different renal tubule subtypes of OVE26 type-1 diabetic mice. ER stress-responseinduced chaperones GRP78, GRP94, and protein disulfide isomerase (PDI) were increased in isolated cortical tubules of older diabetic mice, while PDI was decreased in tubules of young diabetic mice. Immunofluorescence staining of kidneys from older mice showed GRP78 and PDI upregulation in all cortical tubule segments, with substantial induction of PDI in distal tubules. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) phosphorylation was increased in cortical tubules of young diabetic mice, with no differences between older diabetic and control mice. Expression of ER stress-induced PERK inhibitor p58IPK was decreased and then increased in all tubule subtypes of young and older mice, respectively. Knockdown of PERK by small interfering RNA (siRNA) increased fibronectin secretion in cultured proximal tubule cells. Tubules of older diabetic mice had significantly more apoptotic cells, and ER stress-induced proapoptotic transcription factor C/EBP homologous protein (CHOP) was increased in proximal and distal tubules of diabetic mice and diabetic humans. CHOP induction in OVE26 mice was not altered by severity of proteinuria. Overexpression of CHOP in cultured proximal tubule cells increased expression of fibronectin. These findings demonstrate differential ER stress-response signaling in tubule subtypes of diabetic mice and implicate a role for PERK and CHOP in tubule cell matrix protein production.


Asunto(s)
Diabetes Mellitus/patología , Estrés del Retículo Endoplásmico/fisiología , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo , Factores de Edad , Animales , Apoptosis/fisiología , Línea Celular , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Femenino , Fibronectinas/metabolismo , Proteínas del Choque Térmico HSP40/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Humanos , Túbulos Renales Distales/citología , Túbulos Renales Proximales/citología , Glicoproteínas de Membrana/biosíntesis , Ratones , Ratones Transgénicos , Fosforilación , Proteína Disulfuro Isomerasas/biosíntesis , Proteinuria/patología , Interferencia de ARN , ARN Interferente Pequeño/genética , Factor de Transcripción CHOP/biosíntesis , Regulación hacia Arriba , eIF-2 Quinasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...