Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895405

RESUMEN

Multiplexed imaging offers a powerful approach to characterize the spatial topography of tissues in both health and disease. To analyze such data, the specific combination of markers that are present in each cell must be enumerated to enable accurate phenotyping, a process that often relies on unsupervised clustering. We constructed the Pan-Multiplex (Pan-M) dataset containing 197 million distinct annotations of marker expression across 15 different cell types. We used Pan-M to create Nimbus, a deep learning model to predict marker positivity from multiplexed image data. Nimbus is a pre-trained model that uses the underlying images to classify marker expression across distinct cell types, from different tissues, acquired using different microscope platforms, without requiring any retraining. We demonstrate that Nimbus predictions capture the underlying staining patterns of the full diversity of markers present in Pan-M. We then show how Nimbus predictions can be integrated with downstream clustering algorithms to robustly identify cell subtypes in image data. We have open-sourced Nimbus and Pan-M to enable community use at https://github.com/angelolab/Nimbus-Inference .

2.
Nat Commun ; 15(1): 2765, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553455

RESUMEN

Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .


Asunto(s)
Perfilación de la Expresión Génica , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular , Ciclo Celular/genética , Análisis de Secuencia de ARN/métodos
3.
Proc Natl Acad Sci U S A ; 121(7): e2309261121, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38324568

RESUMEN

The CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor-positive, human epidermal growth factor 2 receptor-negative (ER+/HER2-) breast tumor cells. Despite the drug's success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib-a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle "paths" that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes.


Asunto(s)
Neoplasias de la Mama , Piperazinas , Piridinas , Humanos , Femenino , Ciclo Celular , División Celular , Piperazinas/farmacología , Piperazinas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
4.
bioRxiv ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37214963

RESUMEN

Single-cell technologies can readily measure the expression of thousands of molecular features from individual cells undergoing dynamic biological processes, such as cellular differentiation, immune response, and disease progression. While examining cells along a computationally ordered pseudotime offers the potential to study how subtle changes in gene or protein expression impact cell fate decision-making, identifying characteristic features that drive continuous biological processes remains difficult to detect from unenriched and noisy single-cell data. Given that all profiled sources of feature variation contribute to the cell-to-cell distances that define an inferred cellular trajectory, including confounding sources of biological variation (e.g. cell cycle or metabolic state) or noisy and irrelevant features (e.g. measurements with low signal-to-noise ratio) can mask the underlying trajectory of study and hinder inference. Here, we present DELVE (dynamic selection of locally covarying features), an unsupervised feature selection method for identifying a representative subset of dynamically-expressed molecular features that recapitulates cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effect of unwanted sources of variation confounding inference, and instead models cell states from dynamic feature modules that constitute core regulatory complexes. Using simulations, single-cell RNA sequencing data, and iterative immunofluorescence imaging data in the context of the cell cycle and cellular differentiation, we demonstrate that DELVE selects features that more accurately characterize cell populations and improve the recovery of cell type transitions. This feature selection framework provides an alternative approach for improving trajectory inference and uncovering co-variation amongst features along a biological trajectory. DELVE is implemented as an open-source python package and is publicly available at: https://github.com/jranek/delve.

5.
Genome Biol ; 23(1): 186, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064614

RESUMEN

BACKGROUND: Current methods for analyzing single-cell datasets have relied primarily on static gene expression measurements to characterize the molecular state of individual cells. However, capturing temporal changes in cell state is crucial for the interpretation of dynamic phenotypes such as the cell cycle, development, or disease progression. RNA velocity infers the direction and speed of transcriptional changes in individual cells, yet it is unclear how these temporal gene expression modalities may be leveraged for predictive modeling of cellular dynamics. RESULTS: Here, we present the first task-oriented benchmarking study that investigates integration of temporal sequencing modalities for dynamic cell state prediction. We benchmark ten integration approaches on ten datasets spanning different biological contexts, sequencing technologies, and species. We find that integrated data more accurately infers biological trajectories and achieves increased performance on classifying cells according to perturbation and disease states. Furthermore, we show that simple concatenation of spliced and unspliced molecules performs consistently well on classification tasks and can be used over more memory intensive and computationally expensive methods. CONCLUSIONS: This work illustrates how integrated temporal gene expression modalities may be leveraged for predicting cellular trajectories and sample-associated perturbation and disease phenotypes. Additionally, this study provides users with practical recommendations for task-specific integration of single-cell gene expression modalities.


Asunto(s)
Benchmarking , Análisis de la Célula Individual , Expresión Génica
6.
Cell Mol Gastroenterol Hepatol ; 13(5): 1554-1589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176508

RESUMEN

BACKGROUND & AIMS: Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings. METHODS: A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings. RESULTS: Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses. CONCLUSIONS: Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.


Asunto(s)
Mucosa Intestinal , Transcriptoma , Animales , Colon , Epitelio , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado , Ratones , Transcriptoma/genética
8.
Cell Syst ; 13(3): 230-240.e3, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-34800361

RESUMEN

Understanding the organization of the cell cycle has been a longstanding goal in cell biology. We combined time-lapse microscopy, highly multiplexed single-cell imaging of 48 core cell cycle proteins, and manifold learning to render a visualization of the human cell cycle. This data-driven approach revealed the comprehensive "structure" of the cell cycle: a continuum of molecular states that cells occupy as they transition from one cell division to the next, or as they enter or exit cell cycle arrest. Paradoxically, progression deeper into cell cycle arrest was accompanied by increases in proliferative effectors such as CDKs and cyclins, which can drive cell cycle re-entry by overcoming p21 induction. The structure also revealed the molecular trajectories into senescence and the unique combination of molecular features that define this irreversibly arrested state. This approach will enable the comparison of alternative cell cycles during development, in response to environmental perturbation and in disease. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Quinasas Ciclina-Dependientes , Ciclinas , Ciclo Celular , Puntos de Control del Ciclo Celular , División Celular , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA