Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Intern Med ; 291(5): 648-664, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34914849

RESUMEN

OBJECTIVES: Liver-derived apolipoprotein B-100 (ApoB100) is an autoantigen that is recognized by atherogenic CD4+ T cells in cardiovascular disease (CVD). CVD is a major mortality risk for patients with chronic inflammatory liver diseases. However, the impact of liver damage for ApoB100-specific T-cell responses is unknown. METHODS: We identified ApoB100-specific T cells in blood from healthy controls, nonalcoholic fatty liver disease (NAFLD) patients, and CVD patients by activation-induced marker expression and analyzed their differentiation pattern in correlation to the lipid profile and liver damage parameters in a cross-sectional study. To assess the induction of extrahepatic ApoB100-specific T cells upon transient liver damage in vivo, we performed hydrodynamic tail vein injections with diphtheria toxin A (DTA)-encoding plasmid in human ApoB100-transgenic mice. RESULTS: Utilizing immunodominant ApoB100-derived peptides, we found increased ApoB100-specific T-cell populations in NAFLD and CVD patients compared to healthy controls. In a peptide-specific manner, ApoB100 reactivity in healthy controls was accompanied by expression of the regulatory T (Treg)-cell transcription factor FOXP3. In contrast, FOXP3 expression decreased, whereas expression of pro-inflammatory cytokine interleukin (IL)-17A increased in ApoB100-specific T cells from NAFLD and CVD patients. Dyslipidemia and liver damage parameters in blood correlated with reduced FOXP3 expression and elevated IL-17A production in ApoB100-specific T-cell populations, respectively. Moreover, DTA-mediated transient liver damage in human ApoB100-transgenic mice accumulated IL-17a-expressing ApoB100-specific T cells in the periphery. CONCLUSION: Our results show that liver damage promotes pro-inflammatory ApoB100-specific T-cell populations, thereby providing a cellular mechanism for the increased CVD risk in liver disease patients.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Animales , Apolipoproteína B-100/metabolismo , Estudios Transversales , Factores de Transcripción Forkhead/metabolismo , Humanos , Interleucina-17/metabolismo , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Linfocitos T Reguladores
2.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119166, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34699874

RESUMEN

The plasma protein factor XII (FXII) is the liver-derived zymogen of the serine protease FXIIa that initiates an array of proteolytic cascades. Zymogen activation, enzymatic FXIIa activity and functions are regulated by interactions with cell receptors, negatively charged surfaces, other serine proteases, and serpin inhibitors, which bind to distinct protein domains and regions in FXII(a). FXII exerts mitogenic activity, while FXIIa initiates the pro-inflammatory kallikrein-kinin pathway and the pro-thrombotic intrinsic coagulation pathway, respectively. Growing evidence indicates that FXIIa-mediated thrombo-inflammation plays a crucial role in various pathological states besides classical thrombosis, such as endothelial dysfunction. Consistently, increased FXIIa levels are associated with hypercholesterolemia and hypertriglyceridemia. In contrast, FXII deficiency protects from thrombosis but is otherwise not associated with prolonged bleeding or other adverse clinical manifestations. Here, we review current concepts for FXII(a)-driven vascular inflammation focusing on endothelial hyperpermeability, receptor signaling, atherosclerosis and immune cell activation.


Asunto(s)
Angioedema/metabolismo , Aterosclerosis/metabolismo , Endotelio Vascular/metabolismo , Deficiencia del Factor XII/metabolismo , Factor XII/metabolismo , Animales , Endotelio Vascular/patología , Factor XII/genética , Humanos , Inflamación
3.
Blood ; 138(22): 2256-2268, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34587242

RESUMEN

SARS-CoV-2 vaccine ChAdOx1 nCoV-19 (AstraZeneca) causes a thromboembolic complication termed vaccine-induced immune thrombotic thrombocytopenia (VITT). Using biophysical techniques, mouse models, and analysis of VITT patient samples, we identified determinants of this vaccine-induced adverse reaction. Super-resolution microscopy visualized vaccine components forming antigenic complexes with platelet factor 4 (PF4) on platelet surfaces to which anti-PF4 antibodies obtained from VITT patients bound. PF4/vaccine complex formation was charge-driven and increased by addition of DNA. Proteomics identified substantial amounts of virus production-derived T-REx HEK293 proteins in the ethylenediaminetetraacetic acid (EDTA)-containing vaccine. Injected vaccine increased vascular leakage in mice, leading to systemic dissemination of vaccine components known to stimulate immune responses. Together, PF4/vaccine complex formation and the vaccine-stimulated proinflammatory milieu trigger a pronounced B-cell response that results in the formation of high-avidity anti-PF4 antibodies in VITT patients. The resulting high-titer anti-PF4 antibodies potently activated platelets in the presence of PF4 or DNA and polyphosphate polyanions. Anti-PF4 VITT patient antibodies also stimulated neutrophils to release neutrophil extracellular traps (NETs) in a platelet PF4-dependent manner. Biomarkers of procoagulant NETs were elevated in VITT patient serum, and NETs were visualized in abundance by immunohistochemistry in cerebral vein thrombi obtained from VITT patients. Together, vaccine-induced PF4/adenovirus aggregates and proinflammatory reactions stimulate pathologic anti-PF4 antibody production that drives thrombosis in VITT. The data support a 2-step mechanism underlying VITT that resembles the pathogenesis of (autoimmune) heparin-induced thrombocytopenia.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Autoanticuerpos/inmunología , COVID-19/prevención & control , Proteínas de la Cápside/efectos adversos , ChAdOx1 nCoV-19/efectos adversos , Contaminación de Medicamentos , Vectores Genéticos/efectos adversos , Células HEK293/inmunología , Inmunoglobulina G/inmunología , Factor Plaquetario 4/inmunología , Púrpura Trombocitopénica Idiopática/etiología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/efectos adversos , Adenoviridae/inmunología , Animales , Complejo Antígeno-Anticuerpo/ultraestructura , Autoanticuerpos/biosíntesis , Síndrome de Fuga Capilar/etiología , Proteínas de la Cápside/inmunología , Línea Celular Transformada , ChAdOx1 nCoV-19/química , ChAdOx1 nCoV-19/inmunología , ChAdOx1 nCoV-19/toxicidad , Dispersión Dinámica de Luz , Epítopos/química , Epítopos/inmunología , Trampas Extracelulares/inmunología , Extravasación de Materiales Terapéuticos y Diagnósticos/etiología , Vectores Genéticos/inmunología , Células HEK293/química , Humanos , Imagenología Tridimensional , Inmunoglobulina G/biosíntesis , Inflamación , Ratones , Microscopía/métodos , Activación Plaquetaria , Proteómica , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/inmunología , Trombosis de los Senos Intracraneales/diagnóstico por imagen , Trombosis de los Senos Intracraneales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Cultivo de Virus
4.
Semin Immunopathol ; 43(4): 507-517, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34125270

RESUMEN

Coagulation is controlled by a delicate balance of prothrombotic and antithrombotic mechanisms, to prevent both excessive blood loss from injured vessels and pathologic thrombosis. The liver plays a pivotal role in hemostasis through the synthesis of plasma coagulation factors and their inhibitors that, in addition to thrombosis and hemostasis, orchestrates an array of inflammatory responses. As a result, impaired liver function has been linked with both hypercoagulability and bleeding disorders due to a pathologic balance of pro- and anticoagulant plasma factors. At sites of vascular injury, thrombus propagation that finally may occlude the blood vessel depends on negatively charged biopolymers, such as polyphosphates and extracellular DNA, that provide a physiological surface for contact activation of coagulation factor XII (FXII). FXII initiates the contact system that drives both the intrinsic pathway of coagulation, and formation of the inflammatory mediator bradykinin by the kallikrein-kinin system. Moreover, FXII facilitates receptor-mediated signalling, thereby promoting mitogenic activities, angiogenesis, and neutrophil stimulation with implications for liver diseases. Here, we summarize current knowledge on the FXII-driven contact system in liver diseases and review therapeutic approaches to target its activities during impaired liver function.


Asunto(s)
Factor XII , Trombosis , Coagulación Sanguínea , Factor XII/metabolismo , Humanos , Sistema Calicreína-Quinina , Hígado/metabolismo , Trombosis/etiología
5.
EBioMedicine ; 67: 103382, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34000623

RESUMEN

BACKGROUND: Coagulopathy and inflammation are hallmarks of Coronavirus disease 2019 (COVID-19) and are associated with increased mortality. Clinical and experimental data have revealed a role for neutrophil extracellular traps (NETs) in COVID-19 disease. The mechanisms that drive thrombo-inflammation in COVID-19 are poorly understood. METHODS: We performed proteomic analysis and immunostaining of postmortem lung tissues from COVID-19 patients and patients with other lung pathologies. We further compared coagulation factor XII (FXII) and DNase activities in plasma samples from COVID-19 patients and healthy control donors and determined NET-induced FXII activation using a chromogenic substrate assay. FINDINGS: FXII expression and activity were increased in the lung parenchyma, within the pulmonary vasculature and in fibrin-rich alveolar spaces of postmortem lung tissues from COVID-19 patients. In agreement with this, plasmaaac acafajföeFXII activation (FXIIa) was increased in samples from COVID-19 patients. Furthermore, FXIIa colocalized with NETs in COVID-19 lung tissue indicating that NETs accumulation leads to FXII contact activation in COVID-19. We further showed that an accumulation of NETs is partially due to impaired NET clearance by extracellular DNases as DNase substitution improved NET dissolution and reduced FXII activation in vitro. INTERPRETATION: Collectively, our study supports that the NET/FXII axis contributes to the pathogenic chain of procoagulant and proinflammatory responses in COVID-19. Targeting both NETs and FXIIa may offer a potential novel therapeutic strategy. FUNDING: This study was supported by the European Union (840189), the Werner Otto Medical Foundation Hamburg (8/95) and the German Research Foundation (FR4239/1-1, A11/SFB877, B08/SFB841 and P06/KFO306).


Asunto(s)
COVID-19/metabolismo , Trampas Extracelulares/metabolismo , Factor XII/metabolismo , Autopsia , Estudios de Casos y Controles , Desoxirribonucleasas/sangre , Desoxirribonucleasas/metabolismo , Humanos , Pulmón/metabolismo , Activación Neutrófila , Neumonía , Proteómica
6.
Thromb Haemost ; 121(8): 1021-1030, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33307564

RESUMEN

Neutrophil extracellular traps (NETs) and polyphosphates (polyP) have been recognized as procoagulant polyanions. This review summarizes the activities and regulation of the two procoagulant mediators and compares their functions. NETs are composed of DNA which like polyP is built of phosphate units linked by high-energy phosphoanhydride bonds. Both NETs and polyP form insoluble particulate surfaces composed of a DNA/histone meshwork or Ca2+-rich nanoparticles, respectively. These polyanionic molecules modulate coagulation involving an array of mechanisms and trigger thrombosis via activation of the factor XII-driven procoagulant and proinflammatory contact pathway. Here, we outline the current knowledge on NETs and polyP with respect to their procoagulant and prothrombotic nature, strategies for interference of their activities in circulation, as well as the crosstalk between these two molecules. A better understanding of the underlying, cellular mechanisms will shed light on the therapeutic potential of targeting NETs and polyP in coagulation and thrombosis.


Asunto(s)
Coagulación Sanguínea , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Polifosfatos/sangre , Trombosis/sangre , Animales , Coagulación Sanguínea/efectos de los fármacos , Trampas Extracelulares/efectos de los fármacos , Fibrinolíticos/uso terapéutico , Humanos , Neutrófilos/efectos de los fármacos , Polifosfatos/antagonistas & inhibidores , Transducción de Señal , Trombosis/tratamiento farmacológico
7.
Science ; 358(6367): 1202-1206, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191910

RESUMEN

Platelet and fibrin clots occlude blood vessels in hemostasis and thrombosis. Here we report a noncanonical mechanism for vascular occlusion based on neutrophil extracellular traps (NETs), DNA fibers released by neutrophils during inflammation. We investigated which host factors control NETs in vivo and found that two deoxyribonucleases (DNases), DNase1 and DNase1-like 3, degraded NETs in circulation during sterile neutrophilia and septicemia. In the absence of both DNases, intravascular NETs formed clots that obstructed blood vessels and caused organ damage. Vascular occlusions in patients with severe bacterial infections were associated with a defect to degrade NETs ex vivo and the formation of intravascular NET clots. DNase1 and DNase1-like 3 are independently expressed and thus provide dual host protection against deleterious effects of intravascular NETs.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasa I/metabolismo , Endodesoxirribonucleasas/metabolismo , Trampas Extracelulares/enzimología , Trastornos Hemostáticos/enzimología , Neutrófilos/enzimología , Trombosis/enzimología , Animales , Desoxirribonucleasa I/sangre , Desoxirribonucleasa I/genética , Endodesoxirribonucleasas/sangre , Endodesoxirribonucleasas/genética , Trampas Extracelulares/genética , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Hemostasis/genética , Hemostasis/fisiología , Trastornos Hemostáticos/genética , Humanos , Inflamación/sangre , Inflamación/enzimología , Hígado/metabolismo , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Mutantes , Sepsis/sangre , Sepsis/enzimología , Trombosis/genética
8.
Int J Appl Basic Med Res ; 7(1): 67-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28251112

RESUMEN

BACKGROUND: Piper nigrum (PN) is well known for its cytotoxic and pharmacological benefits. However, there is minimal documented evidence about its cytotoxic efficacy against colorectal carcinoma. We therefore sought to procure a precisely quantitative and qualitative result, pertaining the efficacy of an ethanolic extract of PN (EEPN) against colorectal carcinoma. MATERIALS AND METHODS: EEPN was prepared by subjecting dried PN seeds to gradient ethanol fractionation. The total phenol content (TPC), antioxidant activity (AOA), and anti-inflammatory activity (AIA) were determined using Folin-Ciocalteu assay, ferric reducing ability of plasma and 2, 2-diphenyl-1-picrylhydrazyl methods, and human red blood cells membrane stabilizing assay, respectively. Colorectal carcinoma cell lines (HCT-116, HCT-15, and HT-29) were procured from National Centre for Cell Science, Pune, and were cultured in Dulbecco's modified eagle media supplemented with 10% fetal bovine serum and 1 mM L-glutamine. Cells were seeded into a 96-well plate, followed by treatment with increasing concentrations of EEPN. The cytotoxic efficacy was evaluated based on percentage inhibition of cells, using sulforhodamine-B assay. The IC-50 values were calculated using Prism software (Prism from GraphPad software, Inc. CA, USA). RESULTS: Biochemical analysis revealed that 50% EEPN exhibited higher TPC, AOA, and AIA when compared to 70% and 100% EEPN at any given concentration (P = 0.041). Cytotoxic analysis revealed a dose-dependent response with maximum cellular inhibition at TPC of 6 and 3 µg/ml, using 50% EEPN. However, 50% inhibition of cellular growth using 50% EEPN was seen with TPC of 3.2, 2.9, and 1.9 µg/ml at 24, 48, and 72 h, respectively, in HCT-15 cells. Hence, time- and dose-dependent increase in the cytotoxic efficacy of 50% EEPN against colorectal carcinoma cell lines were noted (P < 0.001). CONCLUSION: Given the significantly positive correlations exhibited between the biochemical and the cytotoxic properties evaluated in our study, we hereby conclude PN as a novel therapeutic spice for the treatment of colorectal carcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...