Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(5): e3002405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713717

RESUMEN

We report a new visualization tool for analysis of whole-genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by National Center for Biotechnology Information (NCBI) using assembly alignment algorithms developed by us and others. Researchers can examine large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed where available. CGV currently provides approximately 800 alignments from over 350 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.


Asunto(s)
Genoma , Programas Informáticos , Animales , Genoma/genética , Alineación de Secuencia/métodos , Genómica/métodos , Algoritmos , Estados Unidos , Humanos , Eucariontes/genética , Bases de Datos Genéticas , National Library of Medicine (U.S.) , Anotación de Secuencia Molecular/métodos
2.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077029

RESUMEN

We report a new visualization tool for analysis of whole genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by NCBI using assembly alignment algorithms developed by us and others. Researchers can examine the alignments between the two assemblies using two alternate views: a chromosome ideogram-based view or a 2D genome dotplot. Whole genome alignment views expose large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed in the ideogram view where available. CGV currently provides approximately 700 alignments from over 300 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.

3.
Nucleic Acids Res ; 51(D1): D29-D38, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36370100

RESUMEN

The National Center for Biotechnology Information (NCBI) provides online information resources for biology, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. NCBI provides search and retrieval operations for most of these data from 35 distinct databases. The E-utilities serve as the programming interface for most of these databases. New resources include the Comparative Genome Resource (CGR) and the BLAST ClusteredNR database. Resources receiving significant updates in the past year include PubMed, PMC, Bookshelf, IgBLAST, GDV, RefSeq, NCBI Virus, GenBank type assemblies, iCn3D, ClinVar, GTR, dbGaP, ALFA, ClinicalTrials.gov, Pathogen Detection, antimicrobial resistance resources, and PubChem. These resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Asunto(s)
Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Estados Unidos , National Library of Medicine (U.S.) , Alineación de Secuencia , Biotecnología , Internet
4.
Nature ; 604(7905): 310-315, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388217

RESUMEN

Comprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE1 and RefSeq2 launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins. Here, we describe the MANE transcript sets for use as universal standards for variant reporting and browser display. The MANE Select set identifies a representative transcript for each human protein-coding gene, whereas the MANE Plus Clinical set provides additional transcripts at loci where the Select transcripts alone are not sufficient to report all currently known clinical variants. Each MANE transcript represents an exact match between the exonic sequences of an Ensembl/GENCODE transcript and its counterpart in RefSeq such that the identifiers can be used synonymously. We have now released MANE Select transcripts for 97% of human protein-coding genes, including all American College of Medical Genetics and Genomics Secondary Findings list v3.0 (ref. 3) genes. MANE transcripts are accessible from major genome browsers and key resources. Widespread adoption of these transcript sets will increase the consistency of reporting, facilitate the exchange of data regardless of the annotation source and help to streamline clinical interpretation.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Genómica , Genoma , Humanos , Difusión de la Información , Anotación de Secuencia Molecular , National Library of Medicine (U.S.) , Estados Unidos
5.
Genome Res ; 32(1): 175-188, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34876495

RESUMEN

Eukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recombination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in traditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent experimentally validated human and mouse nongenic elements derived from the literature. The curated data set is comprised of richly annotated sequence records, descriptive records in the NCBI Gene database, reference genome feature annotation, and activity-based interactions between nongenic regions, target genes, and each other. The data set provides succinct functional details and transparent experimental evidence, leverages data from multiple experimental sources, is readily accessible and adaptable, and uses a flexible data model. The data have multiple uses for basic functional discovery, bioinformatics studies, genetic variant interpretation; as known positive controls for epigenomic data evaluation; and as reference standards for functional interactions. Comparisons to other gene regulatory data sets show that the RefSeqFE data set includes a wider range of feature types representing more areas of biology, but it is comparatively smaller and subject to data selection biases. RefSeqFEs thus provide an alternative and complementary resource for experimentally assayed functional elements, with future data set growth expected.


Asunto(s)
Biología Computacional , Genoma , Animales , Bases de Datos Genéticas , Eucariontes/genética , Humanos , Ratones , Estándares de Referencia
6.
Nucleic Acids Res ; 49(D1): D10-D17, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33095870

RESUMEN

The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed® database of citations and abstracts published in life science journals. The Entrez system provides search and retrieval operations for most of these data from 34 distinct databases. The E-utilities serve as the programming interface for the Entrez system. Custom implementations of the BLAST program provide sequence-based searching of many specialized datasets. New resources released in the past year include a new PubMed interface and NCBI datasets. Additional resources that were updated in the past year include PMC, Bookshelf, Genome Data Viewer, SRA, ClinVar, dbSNP, dbVar, Pathogen Detection, BLAST, Primer-BLAST, IgBLAST, iCn3D and PubChem. All of these resources can be accessed through the NCBI home page at https://www.ncbi.nlm.nih.gov.


Asunto(s)
Bases de Datos Genéticas , National Library of Medicine (U.S.) , Biología Computacional/métodos , Bases de Datos de Compuestos Químicos , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Genómica/métodos , Humanos , PubMed , Estados Unidos
7.
Genome Res ; 31(1): 159-169, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239395

RESUMEN

The National Center for Biotechnology Information (NCBI) is an archive providing free access to a wide range and large volume of biological sequence data and literature. Staff scientists at NCBI analyze user-submitted data in the archive, producing gene and SNP annotation and generating sequence alignment tools. NCBI's flagship genome browser, Genome Data Viewer (GDV), displays our in-house RefSeq annotation; is integrated with other NCBI resources such as Gene, dbGaP, and BLAST; and provides a platform for customized analysis and visualization. Here, we describe how members of the biomedical research community can use GDV and the related NCBI Sequence Viewer (SV) to access, analyze, and disseminate NCBI and custom biomedical sequence data. In addition, we report how users can add SV to their own web pages to create a custom graphical sequence display without the need for infrastructure investments or back-end deployments.


Asunto(s)
Genoma , Bases de Datos Genéticas , Humanos , National Library of Medicine (U.S.) , Alineación de Secuencia , Programas Informáticos , Estados Unidos
8.
Nucleic Acids Res ; 46(D1): D221-D228, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29126148

RESUMEN

The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community.


Asunto(s)
Secuencia de Consenso , Bases de Datos Genéticas , Sistemas de Lectura Abierta , Animales , Curaduría de Datos/métodos , Curaduría de Datos/normas , Bases de Datos Genéticas/normas , Guías como Asunto , Humanos , Ratones , Anotación de Secuencia Molecular , National Library of Medicine (U.S.) , Estados Unidos , Interfaz Usuario-Computador
9.
Nucleic Acids Res ; 44(D1): D733-45, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26553804

RESUMEN

The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.


Asunto(s)
Bases de Datos Genéticas , Genómica , Animales , Bovinos , Perfilación de la Expresión Génica , Genoma Fúngico , Genoma Humano , Genoma Microbiano , Genoma de Planta , Genoma Viral , Genómica/normas , Humanos , Invertebrados/genética , Ratones , Anotación de Secuencia Molecular , Nematodos/genética , Filogenia , ARN Largo no Codificante/genética , Ratas , Estándares de Referencia , Análisis de Secuencia de Proteína , Análisis de Secuencia de ARN , Vertebrados/genética
10.
Mamm Genome ; 26(9-10): 379-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26215545

RESUMEN

Complete and accurate annotation of the mouse genome is critical to the advancement of research conducted on this important model organism. The National Center for Biotechnology Information (NCBI) develops and maintains many useful resources to assist the mouse research community. In particular, the reference sequence (RefSeq) database provides high-quality annotation of multiple mouse genome assemblies using a combinatorial approach that leverages computation, manual curation, and collaboration. Implementation of this conservative and rigorous approach, which focuses on representation of only full-length and non-redundant data, produces high-quality annotation products. RefSeq records explicitly link sequences to current knowledge in a timely manner, updating public records regularly and rapidly in response to nomenclature updates, addition of new relevant publications, collaborator discussion, and user feedback. Whole genome re-annotation is also conducted at least every 12-18 months, and often more frequently in response to assembly updates or availability of informative data. This article highlights key features and advantages of RefSeq genome annotation products and presents an overview of NCBI processes to generate these data. Further discussion of NCBI's resources highlights useful features and the best methods for accessing our data.


Asunto(s)
Secuencia de Aminoácidos/genética , Bases de Datos Genéticas , Bases de Datos de Ácidos Nucleicos , Genoma , Animales , Internet , Ratones
11.
Nucleic Acids Res ; 42(Database issue): D756-63, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24259432

RESUMEN

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of annotated genomic, transcript and protein sequence records derived from data in public sequence archives and from computation, curation and collaboration (http://www.ncbi.nlm.nih.gov/refseq/). We report here on growth of the mammalian and human subsets, changes to NCBI's eukaryotic annotation pipeline and modifications affecting transcript and protein records. Recent changes to NCBI's eukaryotic genome annotation pipeline provide higher throughput, and the addition of RNAseq data to the pipeline results in a significant expansion of the number of transcripts and novel exons annotated on mammalian RefSeq genomes. Recent annotation changes include reporting supporting evidence for transcript records, modification of exon feature annotation and the addition of a structured report of gene and sequence attributes of biological interest. We also describe a revised protein annotation policy for alternatively spliced transcripts with more divergent predicted proteins and we summarize the current status of the RefSeqGene project.


Asunto(s)
Bases de Datos Genéticas , Genómica , Mamíferos/genética , Animales , Eucariontes/genética , Exones , Genoma , Genómica/normas , Humanos , Internet , Anotación de Secuencia Molecular , Proteínas/química , Proteínas/genética , ARN/química , Estándares de Referencia
12.
Nucleic Acids Res ; 42(Database issue): D865-72, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24217909

RESUMEN

The Consensus Coding Sequence (CCDS) project (http://www.ncbi.nlm.nih.gov/CCDS/) is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies by the National Center for Biotechnology Information (NCBI) and Ensembl genome annotation pipelines. Identical annotations that pass quality assurance tests are tracked with a stable identifier (CCDS ID). Members of the collaboration, who are from NCBI, the Wellcome Trust Sanger Institute and the University of California Santa Cruz, provide coordinated and continuous review of the dataset to ensure high-quality CCDS representations. We describe here the current status and recent growth in the CCDS dataset, as well as recent changes to the CCDS web and FTP sites. These changes include more explicit reporting about the NCBI and Ensembl annotation releases being compared, new search and display options, the addition of biologically descriptive information and our approach to representing genes for which support evidence is incomplete. We also present a summary of recent and future curation targets.


Asunto(s)
Bases de Datos Genéticas , Proteínas/genética , Animales , Exones , Genómica , Humanos , Internet , Ratones , Anotación de Secuencia Molecular , Análisis de Secuencia
13.
Mob DNA ; 1(1): 10, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20226007

RESUMEN

BACKGROUND: Sadhu elements are non-autonomous retroposons first recognized in Arabidopsis thaliana. There is a wide degree of divergence among different elements, suggesting that these sequences are ancient in origin. Here we report the results of several lines of investigation into the genomic organization and evolutionary history of this element family. RESULTS: We present a classification scheme for Sadhu elements in A. thaliana, describing derivative elements related to the full-length elements we reported previously. We characterized Sadhu5 elements in a set of A. thaliana strains in order to trace the history of radiation in this subfamily. Sequences surrounding the target sites of different Sadhu insertions are consistent with mobilization by LINE retroelements. Finally, we identified Sadhu elements grouping into distinct subfamilies in two related species, Arabidopsis arenosa and Arabidopsis lyrata. CONCLUSIONS: Our analyses suggest that the Sadhu retroelement family has undergone target primed reverse transcription-driven retrotransposition during the divergence of different A. thaliana strains. In addition, Sadhu elements can be found at moderate copy number in three distinct Arabidopsis species, indicating that the evolutionary history of these sequences can be traced back at least several millions of years.

14.
Genome Biol ; 10(9): R100, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19772661

RESUMEN

BACKGROUND: While LINE1 (L1) retroelements comprise nearly 20% of the human genome, the majority are thought to have been rendered transcriptionally inactive, due to either mutation or epigenetic suppression. How many L1 elements 'escape' these forms of repression and contribute to the transcriptome of human somatic cells? We have cloned out expressed sequence tags corresponding to the 5' and 3' flanks of L1 elements in order to characterize the population of elements that are being actively transcribed. We also examined expression of a select number of elements in different individuals. RESULTS: We isolated expressed sequence tags from human lymphoblastoid cell lines corresponding to 692 distinct L1 element sites, including 410 full-length elements. Four of the expression tagged sites corresponding to full-length elements from the human specific L1Hs subfamily were examined in European-American individuals and found to be differentially expressed in different family members. CONCLUSIONS: A large number of different L1 element sites are expressed in human somatic tissues, and this expression varies among different individuals. Paradoxically, few elements were tagged at high frequency, indicating that the majority of expressed L1s are transcribed at low levels. Based on our preliminary expression studies of a limited number of elements in a single family, we predict a significant degree of inter-individual transcript-level polymorphism in this class of sequence.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Humano/genética , Sitios de Unión/genética , Línea Celular , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 4/genética , Cromosomas Humanos Par 6/genética , ADN Complementario/química , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Linfocitos/citología , Linfocitos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Transcripción Genética
15.
Methods ; 49(3): 219-26, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19398011

RESUMEN

LINE1s (L1s) are a class of mammalian non-LTR (long terminal repeat) retroelements that make up nearly 20% of the human genome. Because of the difficulty of studying the mobilization of endogenous L1s, an exogenous cell culture retrotransposition assay has become integral to research in L1 biology. This assay has allowed for investigation of the mechanism and consequences of mobilization of this retroelement, both in cell lines and in whole animal models. In this paper, we outline the genesis of in vitro retrotransposition systems which led to the development of the L1 retrotransposition assay in the mid-1990s. We then provide a retrospective, describing the many uses and variations of this assay, ending with caveats and predictions for future developments. Finally, we provide detailed protocols on the application of the retrotransposition assay, including lists of constructs available in the L1 research community and cell lines in which this assay has been applied.


Asunto(s)
Elementos de Nucleótido Esparcido Largo/fisiología , Animales , Técnicas de Cultivo de Célula , Línea Celular , Pollos , Cricetinae , Técnicas Genéticas , Humanos , Ratones , Modelos Genéticos , Mutagénesis Insercional , Ratas
16.
Genetics ; 176(1): 151-60, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17339215

RESUMEN

We previously reported a novel family of Arabidopsis thaliana nonautonomous retroposons, Sadhu, showing epigenetic variation in natural populations. Here, we show that transcripts corresponding to Sadhu elements accumulate in a subset of mutants carrying disruptions in genes encoding chromatin modification enzymes, but are not significantly expressed in mutants defective in RNA silencing pathways, indicating that RNA-directed processes are not necessary to maintain transcriptional suppression of this class of retroelements. We focused our analysis on three representative elements showing differential responses to ddm1, met1, and hda6 mutations. These mutations had differing effects on cytosine methylation depending on the element and the sequence context. Curiously, the Sadhu6-1 element with the strongest CpHpG methylation is expressed in a met1 CpG methyltransferase mutant, but is not expressed in ddm1 or cmt3 mutants. Regardless of the mutant background, H3meK9 was found at silenced loci, while H3meK4 was restricted to expressed alleles. We discuss the different modes of regulation within this family and the potential impact of this regulation on the stability of silencing in natural populations.


Asunto(s)
Arabidopsis/genética , Epigénesis Genética , Retroelementos/genética , Emparejamiento Base/genética , Cromatina/genética , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Citosina/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Histonas/metabolismo , Lisina/metabolismo , Datos de Secuencia Molecular , Mutación/genética
17.
PLoS Genet ; 2(3): e36, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16552445

RESUMEN

Epigenetic variation is a potential source of genomic and phenotypic variation among different individuals in a population, and among different varieties within a species. We used a two-tiered approach to identify naturally occurring epigenetic alleles in the flowering plant Arabidopsis: a primary screen for transcript level polymorphisms among three strains (Col, Cvi, Ler), followed by a secondary screen for epigenetic alleles. Here, we describe the identification of stable, meiotically transmissible epigenetic alleles that correspond to one member of a previously uncharacterized non-LTR retroposon family, which we have designated Sadhu. The pericentromeric At2g10410 element is highly expressed in strain Col, but silenced in Ler and 18 other strains surveyed. Transcription of this locus is inversely correlated with cytosine methylation and both the expression and DNA methylation states map in a Mendelian manner to stable cis-acting variation. The silent Ler allele can be converted by the epigenetic modifier mutation ddm1 to a meiotically stable expressing allele with an identical primary nucleotide sequence, demonstrating that the variation responsible for transcript level polymorphism among Arabidopsis strains is epigenetic. We extended our characterization of the Sadhu family members and show that different elements are subject to both genetic and epigenetic variation in natural populations. These findings support the view that an important component of natural variation in retroelements is epigenetic.


Asunto(s)
Arabidopsis/genética , Epistasis Genética , Retroelementos/genética , Alelos , Proteínas de Arabidopsis , Centrómero/ultraestructura , Citosina , Metilación de ADN , Genes de Plantas , Variación Genética , Genoma de Planta , Mutación , Polimorfismo Genético , Especificidad de la Especie
18.
Curr Opin Genet Dev ; 14(6): 686-91, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15531165

RESUMEN

Epigenetic marks, such as cytosine methylation and post-translational histone modifications, are important for interpreting and managing eukaryotic genomes. Recent genetic studies in plants have uncovered details on the different interwoven mechanisms that are responsible for specification of genomic cytosine methylation patterns. These mechanisms include targeting cytosine methylation using heterochromatic histone modifications and RNA guides. Genomic cytosine methylation patterns also reflect locus-specific demethylation initiated by specialized DNA glycosylases. While genetics continues to more fully define these mechanisms, genomic studies in Arabidopsis have yielded an unprecedented high-resolution view of how epigenetic marks are layered over a genome.


Asunto(s)
Citosina , Metilación de ADN , Elementos Transponibles de ADN , Genoma , Arabidopsis/genética , Arabidopsis/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Heterocromatina , Histonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...