RESUMEN
Pyriproxyfen is a pyridine-based insecticide used for pest control in fruits and vegetables. It is a potent endocrine disruptor and hormone imitator. Considering its potential hazards to non-target organisms and the associated environment, a lab study was conducted for assessing persistence, mobility in sandy loam soil and associated risk to various non-target organisms and soil enzymes. Pyriproxyfen formulation was applied at 0.05 and 0.10 µg g-1 soil which was equivalent to recommended and double dose of 100 and 200 g a.i. ha-1, respectively. Three methods namely QuEChERS, liquid-solid extraction (LSE) and matrix solid phase dispersion (MSPD) were compared for achieving efficient sample preparation. MSPD was applied for final analysis as it gave better recoveries (94.2 to 104.3%) over other methods with limits of detection and quantification (LOD and LOQ) as 0.0001 and 0.0005 µg g-1, respectively. Dissipation followed first order kinetics with half-lives of 7.6 and 8.2 days in both doses but residues retained over 45 days in soil. Leaching studies conducted at 50 and 100 µg of pyriproxyfen showed extremely poor leaching potential. Retention of over 90% residues in top 5 cm soil surface indicated minimal threat of ground and surface water contamination. Toxicological study demonstrated very different behaviour toward different enzymatic activities. Pyriproxyfen was relatively toxic for alkaline phosphatase and fluorescein diacetate hydrolase enzymes. ß-glucosidase activity was triggered whereas arylsulfatase activity remained unaffected. Unacceptable risk to soil invertebrates at double dose application clearly indicated that its longer persistence in soil could be toxic to other non-target organisms and needs further investigations.
Asunto(s)
Insecticidas , Contaminantes del Suelo , Suelo/química , Insecticidas/toxicidad , Insecticidas/análisis , Ecosistema , Contaminantes del Suelo/análisis , Piridinas/toxicidadRESUMEN
Tembotrione is a triketone group herbicide having worldwide applications for weed management in maize. It is considered to be less stable in the environment and its degradation products may have toxicological consequences due to longer persistence and off-site movements. We studied the persistence behavior and leaching potential of tembotrione and its major metabolite TCMBA in clay loam and sandy loam soils having different physico-chemical properties. The rapid transformation of parent tembotrione to degradation products and their high interactions with soil provided challenging task of residues separation from complex soil matrix. Therefore, a novel sample preparation method (modified QuEChERS) was optimized for trace estimation of tembotrione and TCMBA which offered 86.6-95.6% recoveries with limit of detection (LOD) and quantification (LOQ) as 0.001 and 0.003 µg/g, respectively in both soils without any matrix interference. A first order dissipation kinetics was followed by tembotrione and TCMBA residues with half-life ranged from 7.2 to 13.4 days in both soils. Residues reached below detectable limit on 45-60 days after treatments in two application doses. Leaching experiment revealed maximum retention of tembotrione residues from 15 to 25 cm depth in both soils whereas TCMBA show appreciable leaching potential. It was concluded that tembotrione can be phytotoxic to the succeeding crops if applied at late post-emergence stage. TCMBA can contaminate surface and ground water due to continuous and prolonged use of tembotrione particularly in light textured soils.