Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041148

RESUMEN

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Asunto(s)
Síndrome de Goldenhar , Animales , Ratones , Síndrome de Goldenhar/patología , Asimetría Facial , Linaje , Factores de Transcripción Forkhead
4.
Am J Med Genet A ; 191(1): 77-83, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36271508

RESUMEN

Developmental abnormalities provide a unique opportunity to seek for the molecular mechanisms underlying human organogenesis. Esophageal development remains incompletely understood and elucidating causes for esophageal atresia (EA) in humans would contribute to achieve a better comprehension. Prenatal detection, syndromic classification, molecular diagnosis, and prognostic factors in EA are challenging. Some syndromes have been described to frequently include EA, such as CHARGE, EFTUD2-mandibulofacial dysostosis, Feingold syndrome, trisomy 18, and Fanconi anemia. However, no molecular diagnosis is made in most cases, including frequent associations, such as Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL). This study evaluates the clinical and genetic test results of 139 neonates and 9 fetuses followed-up at the Necker-Enfants Malades Hospital over a 10-years period. Overall, 52 cases were isolated EA (35%), and 96 were associated with other anomalies (65%). The latter group is divided into three subgroups: EA with a known genomic cause (9/148, 6%); EA with Vertebral-Anal-Cardiac-Tracheo-Esophageal-Renal-Limb defects (VACTERL) or VACTERL/Oculo-Auriculo-Vertebral Dysplasia (VACTERL/OAV) (22/148, 14%); EA with associated malformations including congenital heart defects, duodenal atresia, and diaphragmatic hernia without known associations or syndromes yet described (65/148, 44%). Altogether, the molecular diagnostic rate remains very low and may underlie frequent non-Mendelian genetic models.


Asunto(s)
Atresia Esofágica , Cardiopatías Congénitas , Deformidades Congénitas de las Extremidades , Fístula Traqueoesofágica , Recién Nacido , Embarazo , Femenino , Humanos , Atresia Esofágica/diagnóstico , Atresia Esofágica/genética , Estudios Retrospectivos , Fístula Traqueoesofágica/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/complicaciones , Tráquea/anomalías , Columna Vertebral/anomalías , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/complicaciones , Riñón/anomalías , Factores de Elongación de Péptidos , Ribonucleoproteína Nuclear Pequeña U5
5.
Am J Hum Genet ; 109(10): 1885-1893, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36103875

RESUMEN

GABAB receptors are obligatory heterodimers responsible for prolonged neuronal inhibition in the central nervous system. The two receptor subunits are encoded by GABBR1 and GABBR2. Variants in GABBR2 have been associated with a Rett-like phenotype (MIM: 617903), epileptic encephalopathy (MIM: 617904), and milder forms of developmental delay with absence epilepsy. To date, however, no phenotypes associated with pathogenic variants of GABBR1 have been established. Through GeneMatcher, we have ascertained four individuals who each have a monoallelic GABBR1 de novo non-synonymous variant; these individuals exhibit motor and/or language delay, ranging from mild to severe, and in one case, epilepsy. Further phenotypic features include varying degrees of intellectual disability, learning difficulties, autism, ADHD, ODD, sleep disorders, and muscular hypotonia. We functionally characterized the four de novo GABBR1 variants, p.Glu368Asp, p.Ala397Val, p.Ala535Thr, and p.Gly673Asp, in transfected HEK293 cells. GABA fails to efficiently activate the variant receptors, most likely leading to an increase in the excitation/inhibition balance in the central nervous system. Variant p.Gly673Asp in transmembrane domain 3 (TMD3) renders the receptor completely inactive, consistent with failure of the receptor to reach the cell surface. p.Glu368Asp is located near the orthosteric binding site and reduces GABA potency and efficacy at the receptor. GABA exhibits normal potency but decreased efficacy at the p.Ala397Val and p.Ala535Thr variants. Functional characterization of GABBR1-related variants provides a rationale for understanding the severity of disease phenotypes and points to possible therapeutic strategies.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Receptores de GABA-B , Humanos , Epilepsia/genética , Ácido gamma-Aminobutírico/metabolismo , Células HEK293 , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Receptores de GABA-B/genética
6.
Genet Med ; 24(9): 1941-1951, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678782

RESUMEN

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Serina-Treonina Quinasas , Simportadores , Encéfalo/anomalías , Dominio Catalítico/genética , Hemicigoto , Humanos , Mutación con Pérdida de Función , Masculino , Herencia Materna/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación Missense , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Simportadores/metabolismo
7.
Genet Med ; 24(7): 1583-1591, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35499524

RESUMEN

PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Fosfoproteínas , Factores de Transcripción , Regulación de la Expresión Génica , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fosfoproteínas/genética , Factores de Transcripción/genética
8.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35224620

RESUMEN

CoverageMaster (CoM) is a copy number variation (CNV) calling algorithm based on depth-of-coverage maps designed to detect CNVs of any size in exome [whole exome sequencing (WES)] and genome [whole genome sequencing (WGS)] data. The core of the algorithm is the compression of sequencing coverage data in a multiscale Wavelet space and the analysis through an iterative Hidden Markov Model. CoM processes WES and WGS data at nucleotide scale resolution and accurately detects and visualizes full size range CNVs, including single or partial exon deletions and duplications. The results obtained with this approach support the possibility for coverage-based CNV callers to replace probe-based methods such as array comparative genomic hybridization and multiplex ligation-dependent probe amplification in the near future.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Hibridación Genómica Comparativa/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación del Exoma , Secuenciación Completa del Genoma
9.
Front Immunol ; 13: 791522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154108

RESUMEN

Ataxia-telangiectasia (A-T) is a neurodegenerative and primary immunodeficiency disorder (PID) characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classical ataxia-telangiectasia (classical A-T) phenotype, a variant phenotype (variant A-T) exists with partly overlapping but some distinctive disease characteristics. Here we present a case series of 6 patients with classical A-T and variant A-T, which illustrates the phenotypic variability of A-T that can present in childhood with prominent extrapyramidal features, with or without cerebellar ataxia. We report the clinical data, together with a detailed genotype description, immunological analyses, and related expression of the ATM protein. We show that the presence of some residual ATM kinase activity leads to the clinical phenotype variant A-T that differs from the classical A-T. Our data illustrate that the diagnosis of the variant form of A-T can be delayed and difficult, while early recognition of the variant form as well as the classical A-T is a prerequisite for providing a correct prognosis and appropriate rehabilitation and support, including the avoidance of diagnostic X-ray procedures, given the increased risk of malignancies and the higher risk for side effects of subsequent cancer treatment.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Trastornos del Movimiento/diagnóstico , Mutación , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/genética , Adolescente , Adulto , Ataxia Telangiectasia/inmunología , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Niño , Preescolar , Estudios Transversales , Diagnóstico Tardío , Diagnóstico Diferencial , Femenino , Pruebas Genéticas/métodos , Genotipo , Humanos , Masculino , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Fenotipo , Estudios Retrospectivos , Adulto Joven
11.
Genes (Basel) ; 12(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34440452

RESUMEN

PURPOSE: Hearing loss is characterized by an extensive genetic heterogeneity and remains a common disorder in children. Molecular diagnosis is of particular benefit in children, and permits the early identification of clinically-unrecognized hearing loss syndromes, which permits effective clinical management and follow-up, including genetic counselling. METHODS: We performed whole-exome sequencing with the analysis of a panel of 189 genes associated with hearing loss in a prospective cohort of 61 children and 9 adults presenting mainly with isolated hearing loss. RESULTS: The overall diagnostic rate using exome sequencing was 47.2% (52.5% in children; 22% in adults). In children with confirmed molecular results, 17/32 (53.2%) showed autosomal recessive inheritance patterns, 14/32 (43.75%) showed an autosomal dominant condition, and one case had X-linked hearing loss. In adults, the two patients showed an autosomal dominant inheritance pattern. Among the 32 children, 17 (53.1%) had nonsyndromic hearing loss and 15 (46.7%) had syndromic hearing loss. One adult was diagnosed with syndromic hearing loss and one with nonsyndromic hearing loss. The most common causative genes were STRC (5 cases), GJB2 (3 cases), COL11A1 (3 cases), and ACTG1 (3 cases). CONCLUSIONS: Exome sequencing has a high diagnostic yield in children with hearing loss and can reveal a syndromic hearing loss form before other organs/systems become involved, allowing the surveillance of unrecognized present and/or future complications associated with these syndromes.


Asunto(s)
Actinas/genética , Colágeno Tipo XI/genética , Conexina 26/genética , Sordera/genética , Pérdida Auditiva Sensorineural/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Adulto , Niño , Preescolar , Sordera/diagnóstico , Sordera/patología , Exoma/genética , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Mutación/genética , Patología Molecular , Linaje , Secuenciación del Exoma/normas
12.
Genet Med ; 23(10): 1922-1932, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34163037

RESUMEN

PURPOSE: CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype. METHODS: We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations. RESULTS: Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism. CONCLUSION: We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome.


Asunto(s)
Trastorno Autístico , Canales de Calcio Tipo L , Síndrome de QT Prolongado , Sindactilia , Trastorno Autístico/genética , Canales de Calcio Tipo L/genética , Humanos , Fenotipo
14.
Front Immunol ; 12: 773853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003091

RESUMEN

Rituximab (RTX) is an anti-CD20 monoclonal antibody that targets B cells-from the immature pre-B-cell stage in the bone marrow to mature circulating B cells-while preserving stem cells and plasma cells. It is used to treat autoimmune diseases, hematological malignancies, or complications after hematopoietic stem cell transplantation (HSCT). Its safety profile is acceptable; however, a subset of patients can develop persistent hypogammaglobulinemia and associated severe complications, especially in pediatric populations. We report the unrelated cases of two young men aged 17 and 22, presenting with persistent hypogammaglobulinemia more than 7 and 10 years after treatment with RTX, respectively, and administered after HSCT for hemolytic anemia and Epstein-Barr virus reactivation, respectively. Both patients' immunological workups showed low levels of total immunoglobulin, vaccine antibodies, and class switched-memory B cells but an increase in naive B cells, which can also be observed in primary immunodeficiencies such as those making up common variable immunodeficiency. Whole exome sequencing for one of the patients failed to detect a pathogenic variant causing a Mendelian immunological disorder. Annual assessments involving interruption of immunoglobulin replacement therapy each summer failed to demonstrate the recovery of endogenous immunoglobulin production or normal numbers of class switched-memory B cells 7 and 10 years after the patients' respective treatments with RTX. Although the factors that may lead to prolonged hypogammaglobulinemia after rituximab treatment (if necessary) remain unclear, a comprehensive immunological workup before treatment and long-term follow-up are mandatory to assess long-term complications, especially in children.


Asunto(s)
Agammaglobulinemia/diagnóstico , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Rituximab/efectos adversos , Adolescente , Agammaglobulinemia/sangre , Agammaglobulinemia/inducido químicamente , Anemia Aplásica/inmunología , Anemia Aplásica/terapia , Infecciones por Virus de Epstein-Barr/inmunología , Enfermedad Injerto contra Huésped/inmunología , Humanos , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Factores de Tiempo , Adulto Joven
15.
Hum Mutat ; 42(1): 66-76, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131106

RESUMEN

We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.


Asunto(s)
Proteínas CELF , Epilepsia , Discapacidad Intelectual , Proteínas del Tejido Nervioso , Proteínas CELF/genética , Epilepsia/genética , Femenino , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Señales de Localización Nuclear/genética , Proteínas de Unión al ARN/genética
16.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32738225

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Mutación con Ganancia de Función/genética , Mutación con Pérdida de Función/genética , Trastornos del Neurodesarrollo/genética , Aminoacil-ARN de Transferencia/genética , Alelos , Aminoacil-ARNt Sintetasas/genética , Línea Celular , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Linaje , ARN de Transferencia/genética , Células Madre/fisiología
17.
J Neurosci ; 40(28): 5376-5388, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32503885

RESUMEN

Missense variants in Kirrel3 are repeatedly identified as risk factors for autism spectrum disorder and intellectual disability, but it has not been reported if or how these variants disrupt Kirrel3 function. Previously, we studied Kirrel3 loss of function using KO mice and showed that Kirrel3 is a synaptic adhesion molecule necessary to form one specific type of hippocampal synapse in vivo Here, we developed an in vitro, gain-of-function assay for Kirrel3 using neuron cultures prepared from male and female mice and rats. We find that WT Kirrel3 induces synapse formation selectively between Kirrel3-expressing neurons via homophilic, transcellular binding. We tested six disease-associated Kirrel3 missense variants and found that five attenuate this synaptogenic function. All variants tested traffic to the cell surface and localize to synapses similar to WT Kirrel3. Two tested variants lack homophilic transcellular binding, which likely accounts for their reduced synaptogenic function. Interestingly, we also identified variants that bind in trans but cannot induce synapses, indicating that Kirrel3 transcellular binding is necessary but not sufficient for its synaptogenic function. Collectively, these results suggest Kirrel3 functions as a synaptogenic, cell-recognition molecule, and this function is attenuated by missense variants associated with autism spectrum disorder and intellectual disability. Thus, we provide critical insight to the mechanism of Kirrel3 function and the consequences of missense variants associated with autism and intellectual disability.SIGNIFICANCE STATEMENT Here, we advance our understanding of mechanisms mediating target-specific synapse formation by providing evidence that Kirrel3 transcellular interactions mediate target recognition and signaling to promote synapse development. Moreover, this study tests the effects of disease-associated Kirrel3 missense variants on synapse formation, and thereby, increases understanding of the complex etiology of neurodevelopmental disorders arising from rare missense variants in synaptic genes.


Asunto(s)
Hipocampo/metabolismo , Proteínas de la Membrana/genética , Mutación Missense , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Femenino , Hipocampo/citología , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratas
18.
Clin Genet ; 98(1): 10-18, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32233106

RESUMEN

Overlapping syndromes such as Noonan, Cardio-Facio-Cutaneous, Noonan syndrome (NS) with multiple lentigines and Costello syndromes are genetically heterogeneous conditions sharing a dysregulation of the RAS/mitogen-activated protein kinase (MAPK) pathway and are known collectively as the RASopathies. PTPN11 was the first disease-causing gene identified in NS and remains the more prevalent. We report seven patients from three families presenting heterozygous missense variants in PTPN11 probably responsible for a disease phenotype distinct from the classical Noonan syndrome. The clinical presentation and common features of these seven cases overlap with the SHORT syndrome. The latter is the consequence of PI3K/AKT signaling deregulation with the predominant disease-causing gene being PIK3R1. Our data suggest that the phenotypic spectrum associated with pathogenic variants of PTPN11 could be wider than previously described, and this could be due to the dual activity of SHP2 (ie, PTPN11 gene product) on the RAS/MAPK and PI3K/AKT signaling.


Asunto(s)
Variación Genética/genética , Trastornos del Crecimiento/genética , Hipercalcemia/genética , Enfermedades Metabólicas/genética , Nefrocalcinosis/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética
19.
Hum Mol Genet ; 29(7): 1132-1143, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32129449

RESUMEN

The molecular cause of the majority of rare autosomal recessive disorders remains unknown. Consanguinity due to extensive homozygosity unravels many recessive phenotypes and facilitates the detection of novel gene-disease links. Here, we report two siblings with phenotypic signs, including intellectual disability (ID), developmental delay and microcephaly from a Pakistani consanguineous family in which we have identified homozygosity for p(Tyr103His) in the PSMB1 gene (Genbank NM_002793) that segregated with the disease phenotype. PSMB1 encodes a ß-type proteasome subunit (i.e. ß6). Modeling of the p(Tyr103His) variant indicates that this variant weakens the interactions between PSMB1/ß6 and PSMA5/α5 proteasome subunits and thus destabilizes the 20S proteasome complex. Biochemical experiments in human SHSY5Y cells revealed that the p(Tyr103His) variant affects both the processing of PSMB1/ß6 and its incorporation into proteasome, thus impairing proteasome activity. CRISPR/Cas9 mutagenesis or morpholino knock-down of the single psmb1 zebrafish orthologue resulted in microcephaly, microphthalmia and reduced brain size. Genetic evidence in the family and functional experiments in human cells and zebrafish indicates that PSMB1/ß6 pathogenic variants are the cause of a recessive disease with ID, microcephaly and developmental delay due to abnormal proteasome assembly.


Asunto(s)
Enanismo/genética , Microcefalia/genética , Complejo de la Endopetidasa Proteasomal/genética , Alelos , Animales , Niño , Consanguinidad , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Enanismo/complicaciones , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Modelos Moleculares , Linaje , Fenotipo , Pez Cebra/genética
20.
Hum Genomics ; 14(1): 9, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143698

RESUMEN

BACKGROUND: Gain-of-function mutations in the GLUD1 gene, encoding for glutamate dehydrogenase (GDH), result in the hyperinsulinism/hyperammonemia HI/HA syndrome. HI/HA patients present with harmful hypoglycemia secondary to protein-induced HI and elevated plasma ammonia levels. These symptoms may be accompanied by seizures and mental retardation. GDH is a mitochondrial enzyme that catalyzes the oxidative deamination of glutamate to α-ketoglutarate, under allosteric regulations mediated by its inhibitor GTP and its activator ADP. The present study investigated the functional properties of the GDH-G446V variant (alias c.1496G > T, p.(Gly499Val) (NM_005271.4)) in patient-derived lymphoblastoid cells. RESULTS: The calculated energy barrier between the opened and closed state of the enzyme was 41% lower in GDH-G446V compared to wild-type GDH, pointing to altered allosteric regulation. Computational analysis indicated conformational changes of GDH-G446V in the antenna region that is crucial for allosteric regulators. Enzymatic activity measured in patient-derived lymphoblastoid cells showed impaired allosteric responses of GDH-G446V to both regulators GTP and ADP. In particular, as opposed to control lymphoblastoid cells, GDH-G446V cells were not responsive to GTP in the lower range of ADP concentrations. Assessment of the metabolic rate revealed higher mitochondrial respiration in response to GDH-dependent substrates in the GDH-G446V lymphoblastoid cells compared to control cells. This indicates a shift toward glutaminolysis for energy provision in cells carrying the GDH-G446V variant. CONCLUSIONS: Substitution of the small amino acid glycine for the hydrophobic branched-chain valine altered the allosteric sensitivity to both inhibitory action of GTP and activation by ADP, rendering cells metabolically responsive to glutamine.


Asunto(s)
Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Guanosina Trifosfato/metabolismo , Hiperinsulinismo/patología , Linfocitos/patología , Mutación , Adulto , Regulación Alostérica , Estudios de Casos y Controles , Femenino , Glutamato Deshidrogenasa/química , Humanos , Hiperinsulinismo/genética , Recién Nacido , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...