Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 43(5): 2005-2020, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36138280

RESUMEN

Chronic diabetic conditions have been associated with certain cerebral complications, that include neurobehavioral dysfunctional patterns and morphological alterations of neurons, especially the hippocampus. Neuroanatomical studies done by the authors have shown decreased total dendritic length, intersections, dendritic length per branch order and nodes in the CA1 hippocampal region of the diabetic brain as compared to its normal control group, indicating reduced dendritic arborization of the hippocampal CA1 neurons. Epigenetic alterations in the brain are well known to affect age-associated disorders, however its association with the evolving diabetes-induced damage in the brain is still not fully understood. DNA hypermethylation within the neurons, tend to silent the gene expression of several regulatory proteins. The findings in the study have shown an increase in global DNA methylation in palmitic acid-induced lipotoxic Neuro-2a cells as well as within the diabetic mice brain. Inhibiting DNA methylation, restored the levels of HSF1 and certain HSPs, suggesting plausible effect of DNMTs in maintaining the proteostasis and synaptic fidelity. Neuroinflammation, as exhibited by the astrocyte activation (GFAP), were further significantly decreased in the 5-azadeoxycytidine group (DNMT inhibitor). This was further evidenced by decrease in proinflammatory cytokines TNF⍺, IL-6, and mediators iNOS and Phospho-NFkB. Our results suggest that changes in DNA methylation advocate epigenetic dysregulation and its involvement in disrupting the synaptic exactitude in the hippocampus of diabetic mice model, providing an insight into the pathophysiology of diabetes-induced neuroepigenetic changes.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Animales , Ratones , Metilación de ADN/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Encéfalo , Disfunción Cognitiva/genética , Citocinas , Hipocampo
3.
Neurochem Int ; 141: 104858, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010391

RESUMEN

Exposure to chronic stress precipitates depression and anxiety. Stress-induced responses are differentially regulated by the prefrontal cortex (PFC) and basolateral amygdala (BLA). For instance, repeated stress leads to hypertrophy of BLA, resulting in the emergence of affective symptoms. Chronic stress-induced changes in the metabolism of monoamines are central in the manifestation of affective symptoms. Interestingly, BLA via its reciprocal connections modulates prefrontal cortical monoaminergic responses to acute stress. However, the effects of BLA inactivation on chronic stress-induced affective behaviors and monoaminergic changes in the PFC are relatively unknown. Thus, we hypothesized that inactivation of BLA might prevent chronic immobilization stress (CIS)-induced depressive-, anxiety-like behaviors, and associated monoaminergic alterations in the prelimbic (PrL) and anterior cingulate cortex (ACC) subregions of PFC. We used two different BLA silencing strategies, namely ibotenic acid lesion and reversible temporary inactivation using lidocaine. We found that CIS precipitates depressive- and anxiety-like behaviors. Further, CIS-induced negative affective behaviors were associated with decreased levels of 5-HT, DA, and NE, and increased 5-HIAA/5-HT, DOPAC + HVA/DA, and MHPG/NE ratio in the PrL and ACC, suggesting enhanced metabolism. Interestingly, BLA lesion prior to CIS blocked the emergence of depressive- and anxiety-like behaviors. Moreover, the lesion of BLA prior to CIS was sufficient to prevent alterations in levels of monoamines and their metabolites in the PrL and ACC. Thereafter, we evaluated whether the effects of BLA lesion could be mirrored by temporary inactivation of BLA, specifically during stress. Remarkably, temporary inactivation of BLA during stress recapitulated the effects of lesion. Our results have implications for understanding the role of BLA in chronic stress-induced metabolic alterations in prefrontal cortical monoaminergic systems, and associated mood and anxiety disorders. The current study supports the hypothesis that combating amygdalar hyperactivity might be a viable strategy for the management of stress and associated affective disorders.


Asunto(s)
Complejo Nuclear Basolateral/metabolismo , Monoaminas Biogénicas/metabolismo , Inmovilización/psicología , Trastornos del Humor/terapia , Corteza Prefrontal/metabolismo , Estrés Psicológico/psicología , Estrés Psicológico/terapia , Animales , Ansiedad/psicología , Conducta Animal , Depresión/etiología , Depresión/psicología , Ácido Iboténico , Lidocaína , Masculino , Trastornos del Humor/metabolismo , Trastornos del Humor/patología , Actividad Motora , Ratas , Ratas Wistar , Natación/psicología
4.
J Nat Sci Biol Med ; 2(1): 26-37, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22470231

RESUMEN

Neurogenesis is well-established to occur during adulthood in two regions of the brain, the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Research for more than two decades has implicated a role for adult neurogenesis in several brain functions including learning and effects of antidepressants and antipsychotics. Clear understanding of the players involved in the regulation of adult neurogenesis is emerging. We review evidence for the role of stress, dopamine (DA) and acetylcholine (ACh) as regulators of neurogenesis in the SGZ. Largely, stress decreases neurogenesis, while the effects of ACh and DA depend on the type of receptors mediating their action. Increasingly, the new neurons formed in adulthood are potentially linked to crucial brain processes such as learning and memory. In brain disorders like Alzheimer and Parkinson disease, stress-induced cognitive dysfunction, depression and age-associated dementia, the necessity to restore brain functions is enormous. Activation of the resident stem cells in the adult brain to treat neuropsychiatric disorders has immense potential and understanding the mechanisms of regulation of adult neurogenesis by endogenous and exogenous factors holds the key to develop therapeutic strategies for the debilitating neurological and psychiatric disorders.

5.
Psychopharmacology (Berl) ; 214(2): 477-94, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21052984

RESUMEN

RATIONALE: The neural basis of depression-associated cognitive impairment remains poorly understood, and the effect of antidepressants on learning and synaptic plasticity in animal models of depression is unknown. In our previous study, learning was impaired in the neonatal clomipramine model of endogenous depression. However, it is not known whether the cognitive impairment in this model responds to antidepressant treatment, and the electrophysiological and neurochemical bases remain to be determined. OBJECTIVES: To address this, we assessed the effects of escitalopram treatment on spatial learning and memory in the partially baited radial arm maze (RAM) task and long-term potentiation (LTP) in the Schaffer collateral-CA1 synapses in neonatal clomipramine-exposed rats. Also, alterations in the levels of biogenic amines and acetylcholinesterase (AChE) activity were estimated. RESULTS: Fourteen days of escitalopram treatment restored the mobility and preference to sucrose water in the forced swim and sucrose consumption tests, respectively. The learning impairment in the RAM was reversed by escitalopram treatment. Interestingly, CA1-LTP was decreased in the neonatal clomipramine-exposed rats, which was restored by escitalopram treatment. Monoamine levels and AChE activity were decreased in several brain regions, which were restored by chronic escitalopram treatment. CONCLUSIONS: Thus, we demonstrate that hippocampal LTP is decreased in this animal model of depression, possibly explaining the learning deficits. Further, the reversal of learning and electrophysiological impairments by escitalopram reveals the important therapeutic effects of escitalopram that could benefit patients suffering from depression.


Asunto(s)
Antidepresivos de Segunda Generación/administración & dosificación , Monoaminas Biogénicas/metabolismo , Citalopram/administración & dosificación , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Acetilcolinesterasa/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Clomipramina , Depresión/inducido químicamente , Depresión/metabolismo , Depresión/fisiopatología , Depresión/psicología , Modelos Animales de Enfermedad , Esquema de Medicación , Conducta Alimentaria/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Ratas , Ratas Wistar , Natación , Factores de Tiempo
6.
Neuron ; 56(6): 955-62, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18093519

RESUMEN

Fragile X syndrome (FXS) is the most common form of heritable mental retardation and the leading identified cause of autism. FXS is caused by transcriptional silencing of the FMR1 gene that encodes the fragile X mental retardation protein (FMRP), but the pathogenesis of the disease is unknown. According to one proposal, many psychiatric and neurological symptoms of FXS result from unchecked activation of mGluR5, a metabotropic glutamate receptor. To test this idea we generated Fmr1 mutant mice with a 50% reduction in mGluR5 expression and studied a range of phenotypes with relevance to the human disorder. Our results demonstrate that mGluR5 contributes significantly to the pathogenesis of the disease, a finding that has significant therapeutic implications for fragile X and related developmental disorders.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/terapia , Receptores de Glutamato Metabotrópico/genética , Estimulación Acústica/efectos adversos , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Lateralidad Funcional/fisiología , Regulación de la Expresión Génica/genética , Heterocigoto , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis Multivariante , Plasticidad Neuronal , Neuronas/patología , Neuronas/ultraestructura , Fenotipo , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/deficiencia , Convulsiones/etiología , Corteza Visual/fisiopatología
7.
Proc Natl Acad Sci U S A ; 104(27): 11489-94, 2007 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-17592139

RESUMEN

Fragile X syndrome (FXS), the most commonly inherited form of mental retardation and autism, is caused by transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene and consequent loss of the fragile X mental retardation protein. Despite growing evidence suggesting a role of specific receptors and biochemical pathways in FXS pathogenesis, an effective therapeutic method has not been developed. Here, we report that abnormalities in FMR1 knockout (KO) mice, an animal model of FXS, are ameliorated, at least partially, at both cellular and behavioral levels, by an inhibition of the catalytic activity of p21-activated kinase (PAK), a kinase known to play a critical role in actin polymerization and dendritic spine morphogenesis. Greater spine density and elongated spines in the cortex, morphological synaptic abnormalities commonly observed in FXS, are at least partially restored by postnatal expression of a dominant negative (dn) PAK transgene in the forebrain. Likewise, the deficit in cortical long-term potentiation observed in FMR1 KO mice is fully restored by the dnPAK transgene. Several behavioral abnormalities associated with FMR1 KO mice, including those in locomotor activity, stereotypy, anxiety, and trace fear conditioning are also ameliorated, partially or fully, by the dnPAK transgene. Finally, we demonstrate a direct interaction between PAK and fragile X mental retardation protein in vitro. Overall, our results demonstrate the genetic rescue of phenotypes in a FXS mouse model and suggest that the PAK signaling pathway, including the catalytic activity of PAK, is a novel intervention site for development of an FXS and autism therapy.


Asunto(s)
Síndrome del Cromosoma X Frágil/enzimología , Síndrome del Cromosoma X Frágil/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Conducta Animal/fisiología , Espinas Dendríticas/enzimología , Espinas Dendríticas/genética , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Quinasas p21 Activadas
8.
Proc Natl Acad Sci U S A ; 103(35): 13208-13, 2006 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-16924103

RESUMEN

Although neurotrophins have been postulated to have antidepressant properties, their effect on anxiety is not clear. We find that transgenic overexpression of the neurotrophin BDNF has an unexpected facilitatory effect on anxiety-like behavior, concomitant with increased spinogenesis in the basolateral amygdala. Moreover, anxiogenesis and amygdalar spinogenesis are also triggered by chronic stress in control mice but are occluded by BDNF overexpression, thereby suggesting a role for BDNF signaling in stress-induced plasticity in the amygdala. BDNF overexpression also causes antidepressant effects, because transgenic mice exhibit improved performance on the Porsolt forced-swim test and an absence of chronic stress-induced hippocampal atrophy. Thus, structural changes in the amygdala and hippocampus, caused by genetic manipulation of the same molecule BDNF, give rise to contrasting effects on anxiety and depressive symptoms, both of which are major behavioral correlates of stress disorders.


Asunto(s)
Antidepresivos/metabolismo , Ansiedad/genética , Ansiedad/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Ansiedad/psicología , Atrofia , Dendritas/metabolismo , Dendritas/patología , Expresión Génica , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Estrés Fisiológico/inducido químicamente
9.
Proc Natl Acad Sci U S A ; 102(50): 18201-6, 2005 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-16330749

RESUMEN

Repeated stress can impair function in the hippocampus, a brain structure essential for learning and memory. Although behavioral evidence suggests that severe stress triggers cognitive impairment, as seen in major depression or posttraumatic stress disorder, little is known about the molecular mediators of these functional deficits in the hippocampus. We report here both pre- and postsynaptic effects of chronic stress, manifested as a reduction in the number of NMDA receptors, dendritic spines, and expression of growth-associated protein-43 in the cornu ammonis 1 region. Strikingly, the stress-induced decrease in NMDA receptors coincides spatially with sites of plasminogen activation, thereby predicting a role for tissue plasminogen activator (tPA) in this form of stress-induced plasticity. Consistent with this possibility, tPA-/- and plasminogen-/- mice are protected from stress-induced decrease in NMDA receptors and reduction in dendritic spines. At the behavioral level, these synaptic and molecular signatures of stress-induced plasticity are accompanied by impaired acquisition, but not retrieval, of hippocampal-dependent spatial learning, a deficit that is not exhibited by the tPA-/- and plasminogen-/- mice. These findings establish the tPA/plasmin system as an important mediator of the debilitating effects of prolonged stress on hippocampal function at multiple levels of neural organization.


Asunto(s)
Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Plasminógeno/metabolismo , Estrés Fisiológico/fisiopatología , Activador de Tejido Plasminógeno/metabolismo , Análisis de Varianza , Animales , Western Blotting , Espinas Dendríticas/patología , Inmunohistoquímica , Ratones , Ratones Noqueados , Plasminógeno/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Restricción Física , Estrés Fisiológico/metabolismo , Activador de Tejido Plasminógeno/genética
10.
Neuron ; 42(5): 773-87, 2004 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15182717

RESUMEN

Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.


Asunto(s)
Trastornos de la Memoria/patología , Prosencéfalo/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Sinapsis/patología , Valina/análogos & derivados , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal , Northern Blotting/métodos , Western Blotting/métodos , Dendritas/patología , Interacciones Farmacológicas , Activación Enzimática , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/farmacología , Hipocampo/patología , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica/métodos , Modelos Neurológicos , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas de Neurofilamentos/metabolismo , Neuronas/clasificación , Neuronas/patología , Neuronas/ultraestructura , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Retención en Psicología/efectos de los fármacos , Tinción con Nitrato de Plata/métodos , Conducta Espacial/fisiología , Sinaptofisina/metabolismo , Factores de Tiempo , Valina/farmacología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA