Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
J Hazard Mater ; 478: 135483, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39173372

RESUMEN

This study presents a distinctive solid-state naked-eye colorimetric sensing approach by encapsulating a chromoionophoric probe onto a hybrid macro-/meso-pore polymer scaffold for fast and selective sensing of ultra-trace Hg(II). The customized structural/surface properties of the poly(VPy-co-TM) monolith are attained by specific proportions of 2-vinylpyridine (VPy), trimethylolpropane trimethacrylate (TM), and pore-tuning solvents. The interconnected porous network of poly(VPy-co-TM), inherent superior surface area and porosity, is captivating for the homogeneous/voluminous incorporation of probe molecules, i.e., 7-((4-methoxyphenyl)diazenyl)quinoline-8-ol (MPDQ), for the target-specific colorimetric detection. The structural morphology, surface topography, and phase characteristics of the bare poly(VPy-co-TM) monolith and MPDQ@poly(VPy-co-TM) sensor are examined using HR-TEM-SAED (High-Resolution Transmission Electron Microscopy - Selected Area Electron Diffraction), FE-SEM-EDAX (Field Emission Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), p-XRD (Powder X-Ray Diffraction), FT-IR (Fourier Transform Infrared Spectroscopy), UV-Vis-DRS (Ultraviolet-Visible Diffuse Reflectance Spectroscopy), and BET/BJH (Brunauer-Emmett-Teller / Barrett-Joyner-Halenda) analysis. The distinctive properties of the sensor reveal a constrained geometrical orientation of the MPDQ probe onto the long-range continuous monolithic network of meso-/-macropore template, enabling selective interaction with Hg(II) with peculiar color transfiguration from pale yellow to deep brown. The sensor demonstrates a linear spectral-color alliance in the 0-200 ppb concentration range for Hg(II), with quantification and detection limits of 0.63 and 0.19 ppb. The sensor efficacy is verified using certified contaminated water and tobacco samples, with excellent reusability, reliability, and reproducibility of ≥ 99.23 % (RSD ≤1.89 %) and ≥ 99.19 % (RSD ≤1.94 %) of Hg(II), respectively.

2.
J Chromatogr A ; 1713: 464509, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37980811

RESUMEN

The current work focuses on the sequential separation of trivalent lanthanides (except Pm3+) using modified C18 silica-packed supports through the reversed-phase high-performance liquid chromatography (RP-HPLC) technique. In the current research, four indigenously synthesized amphiphilic aromatic triamide derivatives, namely N1, N1, N3, N3, N5, N5-hexa(alkyl) benzene-1,3,5-tri carboxamide (alkyl = butyl, hexyl, octyl, and decyl), were employed as column modifiers. The results show that the separation of Ln3+ can be achieved systematically (< 12 min) by tuning the modifiers' functional group and hydrophobic chain and fine-tuning the column modification procedure and separation parameters. The chromatographic studies revealed that the use of 0.168 mmol of N1, N1, N3, N3,N5, N5-hexa(hexyl)benzene-1,3,5-tricarboxamide (HHBTA) coated column and 0.419 mmol of N1, N1, N3, N3, N5, N5-hexa(octyl) benzene-1,3,5-tricarboxamide (HOBTA) modified columns offered excellent separation for the lanthanoids, using 0.1 M α-hydroxyisobutyric acid (HIBA), as mobile phase. The separated lanthanoids were quantified by post-column derivatization reaction (after the separation process) using Arsenazo (III) as the post-column reagent by integrating with a UV-Visible detector fixed at 655 nm (λmax). A systematic study on the influence of various analytical features, such as the effect of the modifier's chain length and its concentration, mobile phase composition and pH, was performed and optimized for achieving the best separation protocols.


Asunto(s)
Amidas , Elementos de la Serie de los Lantanoides , Cromatografía Líquida de Alta Presión/métodos , Dióxido de Silicio/química , Indicadores y Reactivos
3.
RSC Adv ; 13(5): 3317-3328, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36756448

RESUMEN

Reprocessing nuclear-spent fuels is highly demanded for enhanced resource efficacy and removal of the associated radiotoxicity. The present work elucidates the rapid separation of UO2 2+ and Th4+ ions using a reversed-phase high-performance liquid chromatographic (RP-HPLC) technique by dynamically modifying the surface of a C18 silica monolith column with target-specific ionophoric ligands. For the dynamic modification, four analogous aromatic amide ligands, N 1,N 1,N 3,N 3,N 5,N 5-hexa(alkyl)benzene-1,3,5-tricarboxamide (alkyl = butyl, hexyl, octyl, and decyl) as column modifiers were synthesized. The complexation properties and retention profiles of the amide-based column modifiers for the selective and sequential separation of UO2 2+ and Th4+ ions were investigated. In addition, the selective separation of UO2 2+ and Th4+ ions among the competitive ions of similar chemical properties were also studied. The ionophore immobilized C18 silica monolith columns demonstrated a varying degree of retention behavior for UO2 2+ and Th4+ ions (UO2 2+ is retained longer than Th4+ under all analytical conditions), eventually leading to rapid separations within a period of ≤5 min. A 0.1 M solution of 2-hydroxyisobutyric acid (HIBA, 1 mL min-1) served as the mobile phase, and the qualitative and quantitative assessment of the sequentially separated 5f metal ions was achieved through post-column derivatization reaction, using arsenazo(iii) as a post-column reagent (PCR; 1.5 mL min-1) prior to analysis using a UV-vis detector, at 665 nm (λ max). The developed technique was further evaluated by standardizing various analytical parameters, including modifier concentration, mobile phase pH, mobile phase flow rate, etc., to yield the best chromatographic separation. Also, the conceptual role of alkyl chain length (in the modifier) on the retention behavior of the studied metal ions was evaluated for cutting-edge future applications.

4.
Int J Mol Sci ; 23(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36555365

RESUMEN

In the mouse, two distinct populations of Leydig cells arise during testis development. Fetal Leydig cells arise from a stem cell population and produce T required for masculinization. It is debated whether they persist in the adult testis. A second adult Leydig stem cell population gives rise to progenitor-immature-mature adult type Leydig cells that produce T in response to LH to maintain spermatogenesis. In testis of adult null male mice lacking either only LH (Lhb-/-) or LHR (Lhr-/-), mature Leydig cells are absent but fetal Leydig cells persist. Thus, it is not clear whether other ligands signal via LHRs in Lhb null mice or LH signals via other receptors in the absence of LHR in Lhr null mice. Moreover, it is not clear whether truncated LHR isoforms generated from the same Lhr gene promoter encode functionally relevant LH receptors. To determine the in vivo roles of LH-LHR signaling pathway in the Leydig cell lineage, we generated double null mutant mice lacking both LH Ligand and all forms of LHR. Phenotypic analysis indicated testis morpho-histological characteristics are identical among double null and single mutants which all showed poorly developed interstitium with a reduction in Leydig cell number and absence of late stage spermatids. Gene expression analyses confirmed that the majority of the T biosynthesis pathway enzyme-encoding mRNAs expressed in Leydig cells were all suppressed. Expression of thrombospondin-2, a fetal Leydig cell marker gene was upregulated in single and double null mutants indicating that fetal Leydig cells originate and develop independent of LH-LHR signaling pathway in vivo. Serum and intratesticular T levels were similarly suppressed in single and double mutants. Consequently, expression of AR-regulated genes in Sertoli and germ cells were similarly affected in single and double mutants without any evidence of any additive effect in the combined absence of both LH and LHR. Our studies unequivocally provide genetic evidence that in the mouse testis, fetal Leydig cells do not require LH-LHR signaling pathway and a one-to-one LH ligand-LHR signaling pathway exists in vivo to regulate adult Leydig cell lineage and spermatogenesis.


Asunto(s)
Células Intersticiales del Testículo , Testículo , Ratones , Masculino , Animales , Células Intersticiales del Testículo/metabolismo , Ligandos , Testículo/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Transducción de Señal , Testosterona/metabolismo
5.
Photochem Photobiol Sci ; 21(7): 1273-1286, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35384639

RESUMEN

This work reports a unique ZrO2-Ag2O heterojunction nanocomposite uniformly dispersed on a macro-/meso-porous polymer monolithic template to serve as simple and effective visible light-driven heterogeneous plasmonic photocatalysts for water decontamination. The monolithic photocatalysts' structural properties and surface morphology are characterized using various surface and structural characterization techniques. The photocatalytic performance of the proposed photocatalysts is evaluated by optimizing multiple operational parameters. The photocatalytic properties of the fabricated monolithic nanocomposite are monitored through time-dependent photocatalytic disintegration of norfloxacin drug, a widely employed antimicrobial, with considerable aquatic persistence. The analytical results conclude that a (60:40) ZrO2-Ag2O nanocomposite embedded polymer monolith exhibits superior photocatalytic activity for the complete mineralization of norfloxacin molecules under optimized conditions of solution pH (3.0), photocatalyst quantity (100 mg), pollutant concentration (15 mg/L), photosensitizers (2.0 mM KBrO3), visible light intensity (300 W/cm2 tungsten lamp) and irradiation time (≤ 1 h). The proposed new-age inorganic-organic hybrid visible light photo-catalysts with superior structural and surface properties exhibit brilliant performance and fast responsiveness for water decontamination applications, in addition to their excellent chemical stability, high durability, multi-reusability, and cost-effectiveness.


Asunto(s)
Contaminantes Ambientales , Nanocompuestos , Contaminantes Químicos del Agua , Catálisis , Luz , Nanocompuestos/química , Norfloxacino , Preparaciones Farmacéuticas , Polímeros , Porosidad , Agua , Contaminantes Químicos del Agua/química
6.
Dalton Trans ; 51(9): 3557-3571, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143598

RESUMEN

A set of four new functionalized MOFs, namely MOF-LIC-DPPC, MOF-LIC-GA, MOF-LIC-PCA and MOF-LIC-SA, were synthesized via the post-synthetic modification (PSM) strategy using MOF-LIC-1 for efficient extraction of U(VI) and Th(IV) from an aqueous medium. FTIR, powder XRD, TGA and SEM-EDX were employed for characterization of the functionalized MOFs. Sorption studies for U(VI) and Th(IV) were performed by monitoring the pH and contact time. Interestingly, the modified MOF-LIC-SA displayed rapid (∼5 min) and efficient extraction towards U(VI) and Th(IV) from an aqueous medium and modified MOF-LIC-DPPC displayed enhanced thermal stability (600 °C) compared with the parent MOF-LIC-1 (450 °C). These studies revealed that the grafted functionalities on MOF-LIC-1 possess enhanced sorption efficiency towards U(VI) and Th(IV) as well as thermal stability. MOF-LIC-SA exhibited the highest sorption capacity towards U(VI) and Th(IV), viz. 298 mg g-1 (pH 6) and 149 mg g-1 (pH 6), respectively. Leaching, recyclability, and radiation stability studies were also performed using MOF-LIC-1 MOFs. Additionally, we investigated the nature of U(VI) interactions on MOFs by applying density functional theory (DFT). PSM MOFs with various functionalities display high selectivity and efficient extraction of U(VI) and Th(IV) over a wide pH range (2-9) and also exhibit easy recovery of metal ions from MOFs. These studies reveal that U(VI) and Th(IV) can be extracted from aqueous streams in a pH range from 6 to 8 and potential applications of these MOFs include recovery of U(VI) and Th(IV) from mine water, sea water, etc. The studies reported in the present work also have extensive potential applications for environmental concerns as well as in the nuclear industry.

7.
J Hazard Mater ; 421: 126828, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34396964

RESUMEN

In this work, we manifested a new approach in designing solid-state colorimetric sensors for the selective optical sensing of As3+. The sensor fabrication is modulated using, (i) a cubic mesopores of ordered silica monolith, and (ii) a bimodal macro-/meso-porous polymer monolith, as hosting templates that are immobilized with a tailor-made chromoionophoric probe (DFBEP). The surface morphology and structural dimensions of the monolith templates and the sensor materials are characterized using p-XRD, XPS, FE-SEM-EDAX, HR-TEM-SAED, FT-IR, TGA, and BET/BJH analysis. The sensing components such as pH, probe content, sensor dosage, kinetics, temperature, analyte concentration, linear response range, selectivity, and sensitivity are optimized to arrive at the best sensing conditions. The silica and polymer-based monolithic sensors show a linear spectral response in the concentration range of 2-300 and 2-200 ppb, with a detection limit of 0.87 and 0.75 ppb for As3+, respectively. The real-time ion-monitoring propensity of the sensors is tested with spiked synthetic and real water samples, with a recovery efficiency of ≥99.1% (RSD ≤1.57%). The sensors act as both naked-eye optical sensors and preconcentrators, with a response time of ≤2.5 min. The molecular and photophysical properties of the DFBEP-As3+ complex are studied by TD-DFT calculations, using the B3LYP/6-31G (d,p) method.


Asunto(s)
Arsénico , Dióxido de Silicio , Iones , Polímeros , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier
8.
Dalton Trans ; 50(41): 14706-14713, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34585704

RESUMEN

A simple and reliable colorimetric probe N,N'-bis-(4-diethylamino-2-hydroxybenzylidene)-1,10-phenanthroline-2,9-carbohydrazide (L) has been synthesised by reacting 4-(diethylamino)salicylaldehyde with 1,10-phenanthroline-2,9-dicarbohydrazide. The sensing ability of L was studied by its interactions with various f-block metal ions and other selected metal ions from s- and d-block by colorimetry, UV-visible spectrophotometry, and smartphone integrated red-green-blue (RGB) model in DMSO : H2O (7 : 3, v/v). The pale-yellow colour of L turns to wine-red upon interaction with uranyl ions (UO22+) and yellow-orange in the presence of Th4+, Zr4+, Fe3+, and Lu3+ ions. Other tested metal ions did not show any colour change of L. This color change offered a simple, quick, and consistent method for the selective and sensitive visual detection of trace levels of UO22+ ions without any need for sophisticated instruments. Sensor L exhibits two absorption bands at 358 and 389 nm due to ligand-to-ligand charge transfer (LLCT). Upon interaction of L with UO22+ and Th4+ ions, absorption bands are exhibited at 480 nm and 422 nm, respectively, due to ligand-to-metal charge transfer (LMCT). The UV-vis spectral studies indicated the formation of a 1 : 2 ligand-to-metal complex between L and UO22+ with an estimated association constant of 1.0 × 104 M-2. Using L, the concentration of UO22+ can be detected as low as 73 nM and 150 nM by spectrophotometry and RGB methods, respectively, without any interference from other tested ions with an RSD < 5% (n = 3). The binding mechanism was studied by 1H NMR titration, ESI mass, and FT-IR spectral analysis and was well supported by theoretical results. Overall, sensor L demonstrates promising analytical applicability for the detection of UO22+ ions in a semi-aqueous medium.

9.
RSC Adv ; 11(45): 28126-28137, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35480724

RESUMEN

A simple and efficient route to develop various novel functionalized MOF materials for rapid and excellent recovery of U(vi) from aqueous medium, along with selective sensing has been demonstrated in the present study. In this connection, a set of four distinct post synthetically modified (PSM) iso-reticular metal organic frameworks were synthesized from IRMOF-3 namely, IRMOF-PC (2-pyridine carboxaldehyde), IRMOF-GA (glutaric anhydride), IRMOF-SMA (sulfamic acid), and IRMOF-DPC (diphenylphosphonic chloride) for the recovery and sensing of U(vi) from aqueous medium. The MOFs were characterized by Fourier transform infrared spectroscopy (FTIR), powder XRD, BET surface area analysis, thermogravimetric analysis (TGA), NMR (13C, 1H and 31P), Scanning Electron Microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Among all MOFs, post synthetically modified IRMOF-SMA showed enhanced thermal stability of about 420 °C. The MOFs were investigated for U(vi) sorption studies using a batch technique. All the MOFs exhibit excellent sorption capacity towards U(vi) (>90%) and maximum uptake was observed at pH 6. Sorption capacity of MOFs have the following order; IRMOF-3-DPC (300 mg U g-1) > IRMOF-SMA (292 mg U g-1) > IRMOF-PC (289 mg U g-1) > IRMOF-GA (280 mg U g-1) > IRMOF-3 (273 mg U g-1). IRMOF-DPC shows rapid sorption of uranium within 5 min with excellent uptake of U(vi) (>99%). The desorption of U(vi) was examined with different eluents and 0.01 M HNO3 was found to be most effective. The fluorescence sensing studies of U(vi) via IRMOF-3 and its PSM MOFs revealed high sensitivity and selectivity towards U(vi) over other competing rare earth metal ions (La3+, Ce4+, Sm3+, Nd3+, Gd3+, and Eu3+), wherein IRMOF-GA displayed an impressive detection limit of 0.36 mg L-1 for U(vi).

10.
Mikrochim Acta ; 187(7): 403, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32583066

RESUMEN

The possibility of a multifunctional and reversible solid-state colorimetric sensor is described for the identification and quantification of ultra-trace Cd2+ and Hg2+ ions, using a honeycomb-structured mesoporous silica monolith conjoined with an indigenous chromoionophoric probe, i.e., 4-hexyl-6-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)benzene-1,3-diol (HMTAR). The amphiphilic probe is characterized using NMR, FT-IR, HR-MS, and CHNS elemental analysis. The structural and surface properties of the monolithic template have been characterized using p-XRD, XPS, TEM-SAED, SEM-EDAX, FT-IR, TG-DTA, and N2 isotherm analysis. The unique structural features and distinct analytical properties of the solid-state sensor proffer a strong response in selectively signaling the target analytes. The probe (HMTAR) exhibits a 1:1 stoichiometric binding ratio with the target ions (Cd2+ & Hg2+), with a visual color change from pale orange to dark red for Cd2+ (525 nm, λmax), and to purple for Hg2+ (530 nm, λmax), respectively, in the pH range 7.0-8.0. The influence of various analytical criteria such as pH, temperature, response kinetics, critical probe concentration, sensor quantity, matrix tolerance, linear response range, reusability, the limit of detection (LOD), and quantification (LOQ) has been investigated to validate the sensor performance. The proposed method displays a linear signal response in the concentration range 5-100 µg/L, with a LOD value of 2.67 and 2.90 µg/L, for Cd2+ and Hg2+, respectively. The real-world efficacy of the sensor material has been tested with real and synthetic water samples with a significant recovery value of ≥ 99.2%, to authenticate its data reliability and reproducibility (RSD ≤ 3.53%). Graphical abstract.

11.
Heliyon ; 6(3): e03676, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32258498

RESUMEN

In this paper we solve the field equations for Scale covariant theory of gravitation which was introduced by Caunato et al. [1], for Bianchi V line element in the presence of perfect fluid medium. Here the deceleration parameter is considered to be time dependent which gives the average scale factor a ( t ) = [ sinh ⁡ ( ß t ) ] 1 / n , where n and ß are positive constants. This value of average scale factor is the key expression for solving the field equations. Using the recent observational value of q 0 = - 0.52 - 0.04 + 0.08 and H 0 = 69.2 ± 1.2 derived from BAO/CMB and H(z) data by Santos et al. (2016) [46], we have evaluated three different pairs of ( n , ß ) . We observe that the model represents a phase transition from early deceleration to a present accelerating phase for a particular choice of the pair ( n = 2 , ß = 92.75 ) . Applying some recently developed diagnostic tools like jerk parameter and statefinders, we find that the derived model is exactly in accordance with standard ΛCDM model. Along with these, many physical, geometric and kinematic properties of the model are thoroughly studied and found consistent with recent observations.

12.
RSC Adv ; 10(25): 14650-14661, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497126

RESUMEN

A series of functionalized metal organic frameworks (MOFs) were synthesized by the post-synthetic modification (PSM) of Zr(iv)-containing UiO-66-NH2 MOFs using covalent grafting with various functional groups utilizing pendant -NH2 moieties. The tethering of amide (with/without pendant carboxylic acid), iminopyridine, phoshinic amide and sulphur-containing functionalities produced a library of eight different UiO-66-NH2 derivatives. The functionalized MOFs were characterized by FT-IR spectroscopy, NMR, PXRD, TGA, SEM-EDX and BET surface area analysis. Uranyl ion extraction with the functionalized MOFs was investigated in acidic/neutral/basic conditions (pH 1 to 9). This work presents a comprehensive study of different functionalized MOFs to investigate the effects of various analytical parameters, including pH, contact time, and desorption process. The MOFs as solid phase extractants (SPEs) provide a direct comparison of the sorption efficiencies of different functional groups on a common solid support. A phosphorous-functionalized material, UiO-66-PO-Ph, with enhanced thermal stability (∼500 °C) exhibits the best sorption capacity (∼96%) in an acidic medium (pH 3). The parent MOF UiO-66-NH2 (92%) and iminopyridine-functionalized UiO-66-IMP (90%) showed excellent sorption in neutral conditions (pH 7). Amide-containing MOFs UiO-66-AM1 (40%), UiO-66-AMMal (31%) and UiO-66-AMGlu (70%), sulfur-based MOFs UiO-66-SMA (65%) and UiO-66-SSA (27%), and phosphorous-functionalized UiO-66-PO-OPh (50%) displayed maximum sorption in basic conditions (pH 8). The kinetics studies revealed rapid uranium sorption in about 2 h due to the effective binding of uranyl ions with the anchored functional groups of MOFs; quantitative elution of uranyl ions from the MOF framework was carried out with 0.1/0.01 M HNO3. The MOFs also exhibit moderate recyclability for uranium sorption and can be regenerated by an acidic solution. The functionalized MOFs alter the stability in acidic/basic media; thus, UiO-66-NH2 is a versatile MOF material employed as an SPE for the extraction of radionuclides from aqueous media. This work also provides a platform for the development of new functionalized MOF materials for the efficient sorption of uranium as well as moderate recyclability for its removal, and the potential applications include the removal of uranium from aqueous waste streams.

13.
Phys Chem Chem Phys ; 21(10): 5566-5577, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30785454

RESUMEN

Among the varied classes of weak hydrogen bond, the CHO type is one of immense interest as it governs the finer structures of biological and chemical molecules, hence determining their functionalities. In the present work, this weak hydrogen bond has been shown to strongly influence the complexation behaviour of uranyl nitrate [UO2(NO3)2] with diamyl-H-phosphonate (DAHP) and its branched isomer disecamyl-H-phosphonate (DsAHP). The structures of the bare ligands and complexes have been optimized by density functional theory (DFT) calculations. Surprisingly, despite having the same chemical composition the branched UO2(NO3)2·2DsAHP complex shows a remarkably higher stability (by ∼14 kcal mol-1) compared to the UO2(NO3)2·2DAHP complex. Careful inspection of the optimized structures reveals the existence of multiple CHO hydrogen-bonding interactions between the nitrate oxygens or U[double bond, length as m-dash]O oxygens and the α-hydrogens in the alkyl chains of the ligands. Comparatively stronger such bonds are found in the UO2(NO3)2·2DsAHP complex. The binding free energies associated with the complexes are computed and favoured superior binding energetics for the more stable UO2(NO3)2·2DsAHP complex. Calculations involving diisoamyl-H-phosphonate (DiAHP) and its complexes have also been performed. Theoretical predictions are experimentally tested by carrying out the extraction of U(vi) from nitric acid media using these ligands. DAHP, DsAHP and DiAHP are synthesised, characterised by NMR and evaluated for their physicochemical properties viz. viscosity, density and aqueous solubility. It was experimentally discovered that indeed DsAHP complexation with uranyl nitrate is more favoured. H-phosphonates are generically classified as acidic extractants owing to the formation of an enol tautomer at lower acidities, hence complexing the metal ion by proton exchange. Our experiments interestingly reveal a neutral ligand characteristic for DsAHP alone which is generically an acidic extractant. Furthermore, the enol tautomer of H-phosphonates that governs their extraction profiles at low acidities is also explored by DFT and the anomalous pH dependent complexation trend of DsAHP could be successfully explained. The extractions of Pu(iv) and Th(iv) have also been carried out in addition to U(vi). Solvent extraction behaviour of Am(iii) was also studied with all three ligands; the positive binding energies computed for the Am(iii) complexation corroborate with our experimental results on the poor extraction of Am(iii).

14.
Artículo en Inglés | MEDLINE | ID: mdl-30763916

RESUMEN

A simple phosphoryl quinolone (L) based sensor has been synthesized for the selective recognition of Lu3+ by spectrofluorimetric method. In methanol-water (1:1, v/v), the ligand L exhibits a weak emission peak at 400 nm upon excitation at 280 nm. Upon interaction with various f-metal and other selected metals from s, p, and d-block elements, the fluorescence of L is selectively enhanced in the presence of Lu3+ due to the chelation enhanced fluorescence (CHEF) effects. The quantum yield (φ) of L (φ = 0.063) is enhanced to φ = 0.118 upon chelation with Lu3+ ion. From the titration experiment, the limit of detection (LOD) of sensor L to recognize Lu3+ is estimated down to 24.2 nM, which is much lower than the WHO guidelines (76 µM) in drinking water. The formation of host-guest complexation between L and Lu3+ in 2:1 binding stoichiometry is studied by Job's method and the binding constant is estimated by band fit analysis (logKf = 5.1). Further, the coordination behaviour between L and Lu3+ is well supported by FT-IR, 1H NMR, 13C NMR, 31P NMR, ESI mass spectral data and the theoretical results.

15.
Semin Cancer Biol ; 56: 168-174, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30189250

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer related-deaths. The risk of development of CRC is complex and multifactorial, and includes disruption of homeostasis of the intestinal epithelial layer mediated though dysregulations of tumor suppressing/promoting signaling pathways. Guanylate cyclase 2C (GUCY2C), a membrane-bound guanylate cyclase receptor, is present in the apical membranes of intestinal epithelial cells and maintains homeostasis. GUCY2C is activated upon binding of paracrine hormones (guanylin and uroguanylin) that lead to formation of cyclic GMP from GTP and activation of downstream signaling pathways that are associated with normal homeostasis. Dysregulation/suppression of the GUCY2C-mediated signaling promotes CRC tumorigenesis. High-calorie diet-induced obesity is associated with deficiency of guanylin expression and silencing of GUCY2C-signaling in colon epithelial cells, leading to tumorigenesis. Thus, GUCY2C agonists, such as linaclotide, exhibit considerable role in preventing CRC tumorigenesis. However, phosphodiesterases (PDEs) are elevated in intestinal epithelial cells during CRC tumorigenesis and block GUCY2C-mediated signaling by degrading cyclic GMP to 5`-GMP. PDE5-specific inhibitors, such as sildenafil, show considerable anti-tumorigenic potential against CRC by amplifying the GUCY2C/cGMP signaling pathway, but cannot achieve complete anti-tumorigenic effects. Hence, dual targeting the elevation of cGMP by providing paracrine hormone stimuli to GUCY2C and by inhibition of PDEs may be a better strategy for CRC prevention than alone. This review delineates the involvement of the GUCY2C/cGMP/PDEs signaling pathway in the homeostasis of intestinal epithelial cells. Further, the events are associated with dysregulation of this pathway during CRC tumorigenesis are also discussed. In addition, current updates on targeting the GUCY2C/cGMP/PDEs pathway with GUCY2C agonists and PDEs inhibitors for CRC prevention and treatment are described in detail.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/prevención & control , GMP Cíclico/metabolismo , Hormonas/metabolismo , Comunicación Paracrina , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores de Enterotoxina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Quimioprevención , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/etiología , Susceptibilidad a Enfermedades , Hemostasis , Humanos , Terapia Molecular Dirigida , Comunicación Paracrina/efectos de los fármacos
16.
Inorg Chem ; 57(24): 15270-15279, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30516379

RESUMEN

In this paper, a new Th4+ ion-selective chromogenic sensor (L) was developed by reacting 1,10-phenanthroline-2,9-dicarbohydrazide with 2-hydroxy naphthaldehyde. The sensing ability of L toward Th4+ was investigated in solution and paper strips loaded with L using spectrophotometric and colorimetric methods. The selective interaction of L was examined with various f-metal ions and other selected metal ions from s-block and d-block elements. Results show that by the colorimetric method in solution-phase dimethyl sulfoxide/H2O (7:3, v/v) and paper strip methods, the naked-eye detectable color change of L occurred from colorless solution to yellow-orange and pale yellow colour upon interacting with Th4+ and Al3+, respectively, whereas other metal ions did not interfere. The ligand L exhibits two absorbance bands at 320 and 375 nm because of ligand-to-ligand charge transfer. Upon interaction with Th4+, L undergoes red shift of both absorption bands and the formation of a new UV-vis band at 335 and 440 nm. The UV-visible spectral studies indicate the formation of a 1:1 host-guest complex between L and Th4+ with an association constant of 4.7 × 103 M-1. The limit of quantification and limit of detection of L for the analysis of Th4+ are found to be 167 and 50 nM, respectively. The visually detectable color change of L has been well integrated with a smartphone RGB color value to make it an analytical signal for real-time analysis of Th4+ with the detection limit down to 116 nM. Besides, L was applied for the analysis of Th4+ content present in various real water samples, monazite, and lantern mantle samples by spectrophotometry and RGB color values. The binding mode of L with Th4+ is investigated by 1H NMR, electrospray ionization-mass, and theoretical studies.

17.
Toxicol Rep ; 4: 637-645, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29234602

RESUMEN

Coix lacryma-jobi, commonly known as job's tear, is a tall grain-bearing tropical plant of the family Poaceae. The ethanolic root extract (ERE) of the plant was investigated for the first time for anti-venom activity against Indian cobra Naja naja venom. In-vitro studies were conducted to determine neutralization of phospholipase A2 (PLA2) activity of the Naja naja venom by the ERE. ERE showed significant inhibition of PLA2 activity, which was further confirmed from effective neutralization of human red blood cells (HRBC) lysis induced by the venom. In addition, venom-induced proteolysis, fibrinogenolysis, DNase activity were also neutralized by the ERE, which contained carbohydrates, glycolides, resins and tannins. Oral administration of ERE at doses levels 100, 200 and 400 mg/kg effectively inhibited Naja naja venom-induced lethality in mice. Myotoxicity induced by Naja naja venom, measured by creatine kinase activity in rats was significantly neutralized by the ERE at a dose of 200 mg/kg. Stigmasterol, as one of the component isolated from the ERE, was found to have venom phospholipase A2 inhibition potential, which was confirmed by molecular docking studies with PLA2. In summary, these studies indicate the ability of ERE of Coix lacryma-jobi to effectively neutralize the toxic effects of the venom is, in part, contributed by the inhibition of PLA2 activity among other venom-derived factors.

18.
Reprod Sci ; 24(8): 1102-1110, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28715966

RESUMEN

Breast cancers (BCs) are the most common malignancies among women worldwide. Giving birth to a first child before 24 years of age decreases the BC risk by about half, when women reach menopausal years. The scientific evidence suggests that the actions of human chorionic gonadotropin (hCG) are responsible for this decrease. Human BC cells and tissues contain hCG/luteinizing hormone receptors. The activation of the receptors results in an increase in cell differentiation and apoptosis. Conversely, it decreases the cell proliferation, invasion, and survival. The hCG actions are primarily cyclic adenosine monophosphate/protein kinase A mediated, require the presence of receptors, and involve blocking the activation and nuclear translocation of the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). The women with a higher hCG levels during pregnancy tend to have a lower BC incidence and those with the receptor-positive tumors have a longer metastasis-free survival. The long-term benefits of pregnancy/hCG seem to come from permanent signature genomic imprinting and expression changes, which are characterized by low cell proliferation, increased efficiency of DNA repair mechanisms, cell differentiation, and cells resistance to carcinogenesis. These findings could provide clinical opportunities to use hCG for the prevention of BC in this modern era of increasing number of young women in our societies waiting longer than ever to have their first child. In addition, hCG may be useful to reduce and/or eliminate cellular targets of carcinogenic changes during an active ongoing disease.


Asunto(s)
Neoplasias de la Mama/prevención & control , Gonadotropina Coriónica/metabolismo , Receptores de HL/metabolismo , Apoptosis/fisiología , Neoplasias de la Mama/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Femenino , Humanos , FN-kappa B/metabolismo
19.
Reprod Sci ; 24(3): 355-368, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27436369

RESUMEN

Alzheimer disease (AD) is a slow progressive neurodegenerative disease that affects more elderly women than elderly men. It impairs memory, typically progresses into multidomain cognitive decline that destroys the quality of life, and ultimately leads to death. About 5.3 million older Americans are now living with this disease, and this number is projected to rise to 14 million by 2050. Annual health-care costs in the United States alone are projected to increase to about US$1.1 trillion by 2050. The initial theory that decreasing estrogen levels leads to AD development in postmenopausal women has been proven inconclusive. For example, Women's Health Research Initiative Memory Study and the population-based nested case-control study have failed to demonstrate that estrogen/progesterone (hormone replacement therapy [HRT]) or estrogen replacement therapy could prevent the cognitive decline or reduce the risk of AD. This led to the realization that AD development could be due to a progressive increase in luteinizing hormone (LH) levels in postmenopausal women. Accordingly, a large number of studies have demonstrated that an increase in LH levels is positively correlated with neuropathological, behavioral, and cognitive changes in AD. In addition, LH has been shown to promote amyloidogenic pathway of precursor protein metabolism and deposition of amyloid ß plaques in the hippocampus, a region involved in AD. Cognate receptors that mediate LH effects are abundantly expressed in the hippocampus. Reducing the LH levels by treatment with gonadotropin-releasing hormone agonists could provide therapeutic benefits. Despite these advances, many questions remain and require further research.


Asunto(s)
Enfermedad de Alzheimer/etiología , Encéfalo/metabolismo , Hormona Luteinizante/metabolismo , Receptores de HL/metabolismo , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Andrógenos/metabolismo , Encéfalo/patología , Estrógenos/metabolismo , Femenino , Humanos , Transducción de Señal/fisiología
20.
Oncogenesis ; 5(8): e256, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27526110

RESUMEN

Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...