Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 10(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35062691

RESUMEN

Advances in high-throughput single-cell RNA sequencing (scRNA-seq) have been limited by technical challenges such as tough cell walls and low RNA quantity that prevent transcriptomic profiling of microbial species at throughput. We present microbial Drop-seq or mDrop-seq, a high-throughput scRNA-seq technique that is demonstrated on two yeast species, Saccharomyces cerevisiae, a popular model organism, and Candida albicans, a common opportunistic pathogen. We benchmarked mDrop-seq for sensitivity and specificity and used it to profile 35,109 S. cerevisiae cells to detect variation in mRNA levels between them. As a proof of concept, we quantified expression differences in heat shock S. cerevisiae using mDrop-seq. We detected differential activation of stress response genes within a seemingly homogenous population of S. cerevisiae under heat shock. We also applied mDrop-seq to C. albicans cells, a polymorphic and clinically relevant species of yeast with a thicker cell wall compared to S. cerevisiae. Single-cell transcriptomes in 39,705 C. albicans cells were characterized using mDrop-seq under different conditions, including exposure to fluconazole, a common anti-fungal drug. We noted differential regulation in stress response and drug target pathways between C. albicans cells, changes in cell cycle patterns and marked increases in histone activity when treated with fluconazole. We demonstrate mDrop-seq to be an affordable and scalable technique that can quantify the variability in gene expression in different yeast species. We hope that mDrop-seq will lead to a better understanding of genetic variation in pathogens in response to stimuli and find immediate applications in investigating drug resistance, infection outcome and developing new drugs and treatment strategies.

2.
FEMS Microbiol Lett ; 314(1): 10-7, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21114519

RESUMEN

Microorganisms often use small chemicals or secondary metabolites as informational cues to regulate gene expression. It is hypothesized that microorganisms exploit these signals to gain a competitive advantage. Here, we present examples of pathogens that use this strategy to exclude other microorganisms from the site of infection. An emerging theme is that inhibiting these systems presents a novel approach to antimicrobial therapies.


Asunto(s)
Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Hongos/metabolismo , Micosis/microbiología , Transducción de Señal , Animales , Humanos
3.
Genetics ; 185(1): 211-20, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20233857

RESUMEN

Many plant-associated microbes synthesize the auxin indole-3-acetic acid (IAA), and several IAA biosynthetic pathways have been identified in microbes and plants. Saccharomyces cerevisiae has previously been shown to respond to IAA by inducing pseudohyphal growth. We observed that IAA also induced hyphal growth in the human pathogen Candida albicans and thus may function as a secondary metabolite signal that regulates virulence traits such as hyphal transition in pathogenic fungi. Aldehyde dehydrogenase (Ald) is required for IAA synthesis from a tryptophan (Trp) precursor in Ustilago maydis. Mutant S. cerevisiae with deletions in two ALD genes are unable to convert radiolabeled Trp to IAA, yet produce IAA in the absence of exogenous Trp and at levels higher than wild type. These data suggest that yeast may have multiple pathways for IAA synthesis, one of which is not dependent on Trp.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Morfogénesis , Carácter Cuantitativo Heredable , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/patogenicidad , Candida albicans/citología , Candida albicans/efectos de los fármacos , Diploidia , Eliminación de Gen , Genes Fúngicos/genética , Pruebas Genéticas , Homeostasis/efectos de los fármacos , Humanos , Ácidos Indolacéticos/química , Redes y Vías Metabólicas/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Triptófano/farmacología , Virulencia/efectos de los fármacos
4.
Eukaryot Cell ; 8(8): 1218-27, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19502579

RESUMEN

Treatment of systemic fungal infections is difficult because of the limited number of antimycotic drugs available. Thus, there is an immediate need for simple and innovative systems to assay the contribution of individual genes to fungal pathogenesis. We have developed a pathogenesis assay using Caenorhabditis elegans, an established model host, with Saccharomyces cerevisiae as the invading fungus. We have found that yeast infects nematodes, causing disease and death. Our data indicate that the host produces reactive oxygen species (ROS) in response to fungal infection. Yeast mutants sod1Delta and yap1Delta, which cannot withstand ROS, fail to cause disease, except in bli-3 worms, which carry a mutation in a dual oxidase gene. Chemical inhibition of the NADPH oxidase activity abolishes ROS production in worms exposed to yeast. This pathogenesis assay is useful for conducting systematic, whole-genome screens to identify fungal virulence factors as alternative targets for drug development and exploration of host responses to fungal infections.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Micosis/microbiología , Oxidorreductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/patogenicidad , Factores de Transcripción/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Interacciones Huésped-Patógeno , Humanos , Mutación , Oxidorreductasas/genética , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...