Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Science ; 385(6713): eadk9217, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236169

RESUMEN

To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.


Asunto(s)
Cromatina , Regulación Neoplásica de la Expresión Génica , Neoplasias , Análisis de la Célula Individual , Humanos , Cromatina/metabolismo , Cromatina/genética , Neoplasias/genética , Redes Neurales de la Computación , Mutación , Variaciones en el Número de Copia de ADN , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología
2.
Bioinform Adv ; 4(1): vbae099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39143982

RESUMEN

Summary: Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation: Not applicable.

3.
bioRxiv ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39071303

RESUMEN

Epistasis, or interactions in which alleles at one locus modify the fitness effects of alleles at other loci, plays a fundamental role in genetics, protein evolution, and many other areas of biology. Epistasis is typically quantified by computing the deviation from the expected fitness under an additive or multiplicative model using one of several formulae. However, these formulae are not all equivalent. Importantly, one widely used formula - which we call the chimeric formula - measures deviations from a multiplicative fitness model on an additive scale, thus mixing two measurement scales. We show that for pairwise interactions, the chimeric formula yields a different magnitude, but the same sign (synergistic vs. antagonistic) of epistasis compared to the multiplicative formula that measures both fitness and deviations on a multiplicative scale. However, for higher-order interactions, we show that the chimeric formula can have both different magnitude and sign compared to the multiplicative formula - thus confusing negative epistatic interactions with positive interactions, and vice versa. We resolve these inconsistencies by deriving fundamental connections between the different epistasis formulae and the parameters of the multivariate Bernoulli distribution . Our results demonstrate that the additive and multiplicative epistasis formulae are more mathematically sound than the chimeric formula. Moreover, we demonstrate that the mathematical issues with the chimeric epistasis formula lead to markedly different biological interpretations of real data. Analyzing multi-gene knockout data in yeast, multi-way drug interactions in E. coli , and deep mutational scanning (DMS) of several proteins, we find that 10 - 60% of higher-order interactions have a change in sign with the multiplicative or additive epistasis formula. These sign changes result in qualitatively different findings on functional divergence in the yeast genome, synergistic vs. antagonistic drug interactions, and and epistasis between protein mutations. In particular, in the yeast data, the more appropriate multiplicative formula identifies nearly 500 additional negative three-way interactions, thus extending the trigenic interaction network by 25%.

4.
Bioinformatics ; 40(Suppl 1): i218-i227, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940122

RESUMEN

MOTIVATION: Eukaryotic cells contain organelles called mitochondria that have their own genome. Most cells contain thousands of mitochondria which replicate, even in nondividing cells, by means of a relatively error-prone process resulting in somatic mutations in their genome. Because of the higher mutation rate compared to the nuclear genome, mitochondrial mutations have been used to track cellular lineage, particularly using single-cell sequencing that measures mitochondrial mutations in individual cells. However, existing methods to infer the cell lineage tree from mitochondrial mutations do not model "heteroplasmy," which is the presence of multiple mitochondrial clones with distinct sets of mutations in an individual cell. Single-cell sequencing data thus provide a mixture of the mitochondrial clones in individual cells, with the ancestral relationships between these clones described by a mitochondrial clone tree. While deconvolution of somatic mutations from a mixture of evolutionarily related genomes has been extensively studied in the context of bulk sequencing of cancer tumor samples, the problem of mitochondrial deconvolution has the additional constraint that the mitochondrial clone tree must be concordant with the cell lineage tree. RESULTS: We formalize the problem of inferring a concordant pair of a mitochondrial clone tree and a cell lineage tree from single-cell sequencing data as the Nested Perfect Phylogeny Mixture (NPPM) problem. We derive a combinatorial characterization of the solutions to the NPPM problem, and formulate an algorithm, MERLIN, to solve this problem exactly using a mixed integer linear program. We show on simulated data that MERLIN outperforms existing methods that do not model mitochondrial heteroplasmy nor the concordance between the mitochondrial clone tree and the cell lineage tree. We use MERLIN to analyze single-cell whole-genome sequencing data of 5220 cells of a gastric cancer cell line and show that MERLIN infers a more biologically plausible cell lineage tree and mitochondrial clone tree compared to existing methods. AVAILABILITY AND IMPLEMENTATION: https://github.com/raphael-group/MERLIN.


Asunto(s)
Linaje de la Célula , Mitocondrias , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Linaje de la Célula/genética , Mitocondrias/genética , Mutación , Genoma Mitocondrial , Algoritmos , Evolución Molecular
5.
Bioinformatics ; 40(Suppl 1): i481-i489, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940134

RESUMEN

MOTIVATION: Cell-cell interactions (CCIs) consist of cells exchanging signals with themselves and neighboring cells by expressing ligand and receptor molecules and play a key role in cellular development, tissue homeostasis, and other critical biological functions. Since direct measurement of CCIs is challenging, multiple methods have been developed to infer CCIs by quantifying correlations between the gene expression of the ligands and receptors that mediate CCIs, originally from bulk RNA-sequencing data and more recently from single-cell or spatially resolved transcriptomics (SRT) data. SRT has a particular advantage over single-cell approaches, since ligand-receptor correlations can be computed between cells or spots that are physically close in the tissue. However, the transcript counts of individual ligands and receptors in SRT data are generally low, complicating the inference of CCIs from expression correlations. RESULTS: We introduce Copulacci, a count-based model for inferring CCIs from SRT data. Copulacci uses a Gaussian copula to model dependencies between the expression of ligands and receptors from nearby spatial locations even when the transcript counts are low. On simulated data, Copulacci outperforms existing CCI inference methods based on the standard Spearman and Pearson correlation coefficients. Using several real SRT datasets, we show that Copulacci discovers biologically meaningful ligand-receptor interactions that are lowly expressed and undiscoverable by existing CCI inference methods. AVAILABILITY AND IMPLEMENTATION: Copulacci is implemented in Python and available at https://github.com/raphael-group/copulacci.


Asunto(s)
Comunicación Celular , Transcriptoma , Transcriptoma/genética , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Biología Computacional/métodos , Ligandos
6.
Bioinformatics ; 40(Suppl 1): i228-i236, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940146

RESUMEN

MOTIVATION: Recently developed spatial lineage tracing technologies induce somatic mutations at specific genomic loci in a population of growing cells and then measure these mutations in the sampled cells along with the physical locations of the cells. These technologies enable high-throughput studies of developmental processes over space and time. However, these applications rely on accurate reconstruction of a spatial cell lineage tree describing both past cell divisions and cell locations. Spatial lineage trees are related to phylogeographic models that have been well-studied in the phylogenetics literature. We demonstrate that standard phylogeographic models based on Brownian motion are inadequate to describe the spatial symmetric displacement (SD) of cells during cell division. RESULTS: We introduce a new model-the SD model for cell motility that includes symmetric displacements of daughter cells from the parental cell followed by independent diffusion of daughter cells. We show that this model more accurately describes the locations of cells in a real spatial lineage tracing of mouse embryonic stem cells. Combining the spatial SD model with an evolutionary model of DNA mutations, we obtain a phylogeographic model for spatial lineage tracing. Using this model, we devise a maximum likelihood framework-MOLLUSC (Maximum Likelihood Estimation Of Lineage and Location Using Single-Cell Spatial Lineage tracing Data)-to co-estimate time-resolved branch lengths, spatial diffusion rate, and mutation rate. On both simulated and real data, we show that MOLLUSC accurately estimates all parameters. In contrast, the Brownian motion model overestimates spatial diffusion rate in all test cases. In addition, the inclusion of spatial information improves accuracy of branch length estimation compared to sequence data alone. On real data, we show that spatial information has more signal than sequence data for branch length estimation, suggesting augmenting lineage tracing technologies with spatial information is useful to overcome the limitations of genome-editing in developmental systems. AVAILABILITY AND IMPLEMENTATION: The python implementation of MOLLUSC is available at https://github.com/raphael-group/MOLLUSC.


Asunto(s)
División Celular , Linaje de la Célula , Movimiento Celular , Animales , Ratones , Funciones de Verosimilitud , Filogeografía , Mutación , Filogenia
7.
Genome Biol ; 25(1): 130, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773520

RESUMEN

Bulk DNA sequencing of multiple samples from the same tumor is becoming common, yet most methods to infer copy-number aberrations (CNAs) from this data analyze individual samples independently. We introduce HATCHet2, an algorithm to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 extends the earlier HATCHet method by improving identification of focal CNAs and introducing a novel statistic, the minor haplotype B-allele frequency (mhBAF), that enables identification of mirrored-subclonal CNAs. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 10 prostate cancer patients reveals previously unreported mirrored-subclonal CNAs affecting cancer genes.


Asunto(s)
Algoritmos , Variaciones en el Número de Copia de ADN , Haplotipos , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/genética , Masculino , Análisis de Secuencia de ADN/métodos , Neoplasias/genética , Frecuencia de los Genes , Análisis de la Célula Individual
8.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712136

RESUMEN

A key challenge in cancer genomics is understanding the functional relationships and dependencies between combinations of somatic mutations that drive cancer development. Such driver mutations frequently exhibit patterns of mutual exclusivity or co-occurrence across tumors, and many methods have been developed to identify such dependency patterns from bulk DNA sequencing data of a cohort of patients. However, while mutual exclusivity and co-occurrence are described as properties of driver mutations, existing methods do not explicitly disentangle functional, driver mutations from neutral, passenger mutations. In particular, nearly all existing methods evaluate mutual exclusivity or co-occurrence at the gene level, marking a gene as mutated if any mutation - driver or passenger - is present. Since some genes have a large number of passenger mutations, existing methods either restrict their analyses to a small subset of suspected driver genes - limiting their ability to identify novel dependencies - or make spurious inferences of mutual exclusivity and co-occurrence involving genes with many passenger mutations. We introduce DIALECT, an algorithm to identify dependencies between pairs of driver mutations from somatic mutation counts. We derive a latent variable mixture model for drivers and passengers that combines existing probabilistic models of passenger mutation rates with a latent variable describing the unknown status of a mutation as a driver or passenger. We use an expectation maximization (EM) algorithm to estimate the parameters of our model, including the rates of mutually exclusivity and co-occurrence between drivers. We demonstrate that DIALECT more accurately infers mutual exclusivity and co-occurrence between driver mutations compared to existing methods on both simulated mutation data and somatic mutation data from 5 cancer types in The Cancer Genome Atlas (TCGA).

9.
bioRxiv ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38496496

RESUMEN

Recent dynamic lineage tracing technologies combine CRISPR-based genome editing with single-cell sequencing to track cell divisions during development. A key computational problem in dynamic lineage tracing is to infer a cell lineage tree from the measured CRISPR-induced mutations. Three features of dynamic lineage tracing data distinguish this problem from standard phylogenetic tree inference. First, the CRISPR-editing process modifies a genomic location exactly once. This non-modifiable property is not well described by the time-reversible models commonly used in phylogenetics. Second, as a consequence of non-modifiability, the number of mutations per time unit decreases over time. Third, CRISPR-based genome-editing and single-cell sequencing results in high rates of both heritable and non-heritable (dropout) missing data. To model these features, we introduce the Probabilistic Mixed-type Missing (PMM) model. We describe an algorithm, LAML (Lineage Analysis via Maximum Likelihood), to search for the maximum likelihood (ML) tree under the PMM model. LAML combines an Expectation Maximization (EM) algorithm with a heuristic tree search to jointly estimate tree topology, branch lengths and missing data parameters. We derive a closed-form solution for the M-step in the case of no heritable missing data, and a block coordinate ascent approach in the general case which is more efficient than the standard General Time Reversible (GTR) phylogenetic model. On simulated data, LAML infers more accurate tree topologies and branch lengths than existing methods, with greater advantages on datasets with higher ratios of heritable to non-heritable missing data. We show that LAML provides unbiased time-scaled estimates of branch lengths. In contrast, we demonstrate that maximum parsimony methods for lineage tracing data not only underestimate branch lengths, but also yield branch lengths which are not proportional to time, due to the nonlinear decay in the number of mutations on branches further from the root. On lineage tracing data from a mouse model of lung adenocarcinoma, we show that LAML infers phylogenetic distances that are more concordant with gene expression data compared to distances derived from maximum parsimony. The LAML tree topology is more plausible than existing published trees, with fewer total cell migrations between distant metastases and fewer reseeding events where cells migrate back to the primary tumor. Crucially, we identify three distinct time epochs of metastasis progression, which includes a burst of metastasis events to various anatomical sites during a single month.

10.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38496660

RESUMEN

Spatially resolved transcriptomics (SRT) measures mRNA transcripts at thousands of locations within a tissue slice, revealing spatial variations in gene expression and distribution of cell types. In recent studies, SRT has been applied to tissue slices from multiple timepoints during the development of an organism. Alignment of this spatiotemporal transcriptomics data can provide insights into the gene expression programs governing the growth and differentiation of cells over space and time. We introduce DeST-OT (Developmental SpatioTemporal Optimal Transport), a method to align SRT slices from pairs of developmental timepoints using the framework of optimal transport (OT). DeST-OT uses semi-relaxed optimal transport to precisely model cellular growth, death, and differentiation processes that are not well-modeled by existing alignment methods. We demonstrate the advantage of DeST-OT on simulated slices. We further introduce two metrics to quantify the plausibility of a spatiotemporal alignment: a growth distortion metric which quantifies the discrepancy between the inferred and the true cell type growth rates, and a migration metric which quantifies the distance traveled between ancestor and descendant cells. DeST-OT outperforms existing methods on these metrics in the alignment of spatiotemporal transcriptomics data from the development of axolotl brain.

11.
Genome Biol ; 24(1): 272, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037115

RESUMEN

A tumor contains a diverse collection of somatic mutations that reflect its past evolutionary history and that range in scale from single nucleotide variants (SNVs) to large-scale copy-number aberrations (CNAs). However, no current single-cell DNA sequencing (scDNA-seq) technology produces accurate measurements of both SNVs and CNAs, complicating the inference of tumor phylogenies. We introduce a new evolutionary model, the constrained k-Dollo model, that uses SNVs as phylogenetic markers but constrains losses of SNVs according to clusters of cells. We derive an algorithm, ConDoR, that infers phylogenies from targeted scDNA-seq data using this model. We demonstrate the advantages of ConDoR on simulated and real scDNA-seq data.


Asunto(s)
Neoplasias , Humanos , Animales , Filogenia , Neoplasias/genética , Mutación , Algoritmos , Análisis de Secuencia de ADN , Aves/genética , Variaciones en el Número de Copia de ADN
12.
Cell Syst ; 14(12): 1113-1121.e9, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38128483

RESUMEN

CRISPR-Cas9-based genome editing combined with single-cell sequencing enables the tracing of the history of cell divisions, or cellular lineage, in tissues and whole organisms. Although standard phylogenetic approaches may be applied to reconstruct cellular lineage trees from this data, the unique features of the CRISPR-Cas9 editing process motivate the development of specialized models that describe the evolution of CRISPR-Cas9-induced mutations. Here, we introduce the "star homoplasy" evolutionary model that constrains a phylogenetic character to mutate at most once along a lineage, capturing the "non-modifiability" property of CRISPR-Cas9 mutations. We derive a combinatorial characterization of star homoplasy phylogenies and use this characterization to develop an algorithm, "Startle", that computes a maximum parsimony star homoplasy phylogeny. We demonstrate that Startle infers more accurate phylogenies on simulated lineage tracing data compared with existing methods and finds parsimonious phylogenies with fewer metastatic migrations on lineage tracing data from mouse metastatic lung adenocarcinoma.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Ratones , Sistemas CRISPR-Cas/genética , Filogenia , Edición Génica/métodos , Linaje de la Célula/genética , Mutación
13.
Nature ; 623(7986): 432-441, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914932

RESUMEN

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Hipoxia de la Célula , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal , Estrógenos/metabolismo , Perfilación de la Expresión Génica , Proteínas Activadoras de GTPasa/metabolismo , Metástasis de la Neoplasia , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
14.
PLoS Comput Biol ; 19(11): e1011590, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943952

RESUMEN

MOTIVATION: New low-coverage single-cell DNA sequencing technologies enable the measurement of copy number profiles from thousands of individual cells within tumors. From this data, one can infer the evolutionary history of the tumor by modeling transformations of the genome via copy number aberrations. Copy number aberrations alter multiple adjacent genomic loci, violating the standard phylogenetic assumption that loci evolve independently. Thus, specialized models to infer copy number phylogenies have been introduced. A widely used model is the copy number transformation (CNT) model in which a genome is represented by an integer vector and a copy number aberration is an event that either increases or decreases the number of copies of a contiguous segment of the genome. The CNT distance between a pair of copy number profiles is the minimum number of events required to transform one profile to another. While this distance can be computed efficiently, no efficient algorithm has been developed to find the most parsimonious phylogeny under the CNT model. RESULTS: We introduce the zero-agnostic copy number transformation (ZCNT) model, a simplification of the CNT model that allows the amplification or deletion of regions with zero copies. We derive a closed form expression for the ZCNT distance between two copy number profiles and show that, unlike the CNT distance, the ZCNT distance forms a metric. We leverage the closed-form expression for the ZCNT distance and an alternative characterization of copy number profiles to derive polynomial time algorithms for two natural relaxations of the small parsimony problem on copy number profiles. While the alteration of zero copy number regions allowed under the ZCNT model is not biologically realistic, we show on both simulated and real datasets that the ZCNT distance is a close approximation to the CNT distance. Extending our polynomial time algorithm for the ZCNT small parsimony problem, we develop an algorithm, Lazac, for solving the large parsimony problem on copy number profiles. We demonstrate that Lazac outperforms existing methods for inferring copy number phylogenies on both simulated and real data.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Filogenia , Variaciones en el Número de Copia de ADN/genética , Neoplasias/genética , Genómica/métodos , Genoma , Algoritmos
15.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873258

RESUMEN

Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns such as gene expression gradients. We address these issues by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth that model both continuous gradients and discontinuous spatial variation in the expression of individual genes. We validate GASTON by showing that it accurately identifies spatial domains and marker genes across several biological systems. In SRT data from the brain, GASTON reveals gradients of neuronal differentiation and firing, and in SRT data from a tumor sample, GASTON infers gradients of metabolic activity and epithelial-mesenchymal transition (EMT)-related gene expression in the tumor microenvironment.

16.
Genome Res ; 33(7): 1124-1132, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37553263

RESUMEN

Spatially resolved transcriptomics (SRT) technologies measure messenger RNA (mRNA) expression at thousands of locations in a tissue slice. However, nearly all SRT technologies measure expression in two-dimensional (2D) slices extracted from a 3D tissue, thus losing information that is shared across multiple slices from the same tissue. Integrating SRT data across multiple slices can help recover this information and improve downstream expression analyses, but multislice alignment and integration remains a challenging task. Existing methods for integrating SRT data either do not use spatial information or assume that the morphology of the tissue is largely preserved across slices, an assumption that is often violated because of biological or technical reasons. We introduce PASTE2, a method for partial alignment and 3D reconstruction of multislice SRT data sets, allowing only partial overlap between aligned slices and/or slice-specific cell types. PASTE2 formulates a novel partial fused Gromov-Wasserstein optimal transport problem, which we solve using a conditional gradient algorithm. PASTE2 includes a model selection procedure to estimate the fraction of overlap between slices, and optionally uses information from histological images that accompany some SRT experiments. We show on both simulated and real data that PASTE2 obtains more accurate alignments than existing methods. We further use PASTE2 to reconstruct a 3D map of gene expression in a Drosophila embryo from a 16 slice Stereo-seq data set. PASTE2 produces accurate alignments of multislice data sets from multiple SRT technologies, enabling detailed studies of spatial gene expression across a wide range of biological applications.


Asunto(s)
Algoritmos , Transcriptoma
17.
NAR Cancer ; 5(3): zcad045, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37636316

RESUMEN

Androgen receptor (AR) inhibition is standard of care for advanced prostate cancer (PC). However, efficacy is limited by progression to castration-resistant PC (CRPC), usually due to AR re-activation via mechanisms that include AR amplification and structural rearrangement. These two classes of AR alterations often co-occur in CRPC tumors, but it is unclear whether this reflects intercellular or intracellular heterogeneity of AR. Resolving this is important for developing new therapies and predictive biomarkers. Here, we analyzed 41 CRPC tumors and 6 patient-derived xenografts (PDXs) using linked-read DNA-sequencing, and identified 7 tumors that developed complex, multiply-rearranged AR gene structures in conjunction with very high AR copy number. Analysis of PDX models by optical genome mapping and fluorescence in situ hybridization showed that AR residing on extrachromosomal DNA (ecDNA) was an underlying mechanism, and was associated with elevated levels and diversity of AR expression. This study identifies co-evolution of AR gene copy number and structural complexity via ecDNA as a mechanism associated with endocrine therapy resistance.

18.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37502835

RESUMEN

Multi-region DNA sequencing of primary tumors and metastases from individual patients helps identify somatic aberrations driving cancer development. However, most methods to infer copy-number aberrations (CNAs) analyze individual samples. We introduce HATCHet2 to identify haplotype- and clone-specific CNAs simultaneously from multiple bulk samples. HATCHet2 introduces a novel statistic, the mirrored haplotype B-allele frequency (mhBAF), to identify mirrored-subclonal CNAs having different numbers of copies of parental haplotypes in different tumor clones. HATCHet2 also has high accuracy in identifying focal CNAs and extends the earlier HATCHet method in several directions. We demonstrate HATCHet2's improved accuracy using simulations and a single-cell sequencing dataset. HATCHet2 analysis of 50 prostate cancer samples from 10 patients reveals previously-unreported mirrored-subclonal CNAs affecting cancer genes.

19.
Cancer Res Commun ; 3(4): 564-575, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37066022

RESUMEN

Osteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNA) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear whether osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in >12,000 tumor cells obtained from human osteosarcomas using single-cell DNA sequencing, with a degree of precision and accuracy not possible when inferring single-cell states using bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from this whole-genome single-cell DNA sequencing data. Surprisingly, despite extensive structural complexity, these tumors exhibit a high degree of cell-cell homogeneity with little subclonal diversification. Longitudinal analysis of patient samples obtained at distant therapeutic timepoints (diagnosis, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the majority of SCNAs were acquired early in the oncogenic process, with relatively few structure-altering events arising in response to therapy or during adaptation to growth in metastatic tissues. These data further support the emerging hypothesis that early catastrophic events, rather than sustained genomic instability, give rise to structural complexity, which is then preserved over long periods of tumor developmental time. Significance: Chromosomally complex tumors are often described as genomically unstable. However, determining whether complexity arises from remote time-limited events that give rise to structural alterations or a progressive accumulation of structural events in persistently unstable tumors has implications for diagnosis, biomarker assessment, mechanisms of treatment resistance, and represents a conceptual advance in our understanding of intratumoral heterogeneity and tumor evolution.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Filogenia , Variaciones en el Número de Copia de ADN/genética , Recurrencia Local de Neoplasia , Osteosarcoma/genética , Inestabilidad Genómica/genética , Neoplasias Óseas/genética
20.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090633

RESUMEN

Motivation: New low-coverage single-cell DNA sequencing technologies enable the measurement of copy number profiles from thousands of individual cells within tumors. From this data, one can infer the evolutionary history of the tumor by modeling transformations of the genome via copy number aberrations. A widely used model to infer such copy number phylogenies is the copy number transformation (CNT) model in which a genome is represented by an integer vector and a copy number aberration is an event that either increases or decreases the number of copies of a contiguous segment of the genome. The CNT distance between a pair of copy number profiles is the minimum number of events required to transform one profile to another. While this distance can be computed efficiently, no efficient algorithm has been developed to find the most parsimonious phylogeny under the CNT model. Results: We introduce the zero-agnostic copy number transformation (ZCNT) model, a simplification of the CNT model that allows the amplification or deletion of regions with zero copies. We derive a closed form expression for the ZCNT distance between two copy number profiles and show that, unlike the CNT distance, the ZCNT distance forms a metric. We leverage the closed-form expression for the ZCNT distance and an alternative characterization of copy number profiles to derive polynomial time algorithms for two natural relaxations of the small parsimony problem on copy number profiles. While the alteration of zero copy number regions allowed under the ZCNT model is not biologically realistic, we show on both simulated and real datasets that the ZCNT distance is a close approximation to the CNT distance. Extending our polynomial time algorithm for the ZCNT small parsimony problem, we develop an algorithm, Lazac, for solving the large parsimony problem on copy number profiles. We demonstrate that Lazac outperforms existing methods for inferring copy number phylogenies on both simulated and real data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...