RESUMEN
Renal cancer, although still rare among individuals under 45 years of age, is on the rise in the general population. The risk and timing of subsequent renal cancer in survivors of childhood cancer is not well established. Using the SEER registry, we reported the incidence of subsequent malignant renal neoplasms after treatment for primary malignancy diagnosed under 20 years of age. We evaluated clinical characteristics, standardized incidence ratio (SIR), and Kaplan-Meier survival estimates. Fifty-three survivors developed subsequent renal cancer (54 total cases). Of these, 54.7% were female, 88.7% were white, and 13.2% were Hispanic. Mean ages at primary malignancy and subsequent renal cancer were 10.1 and 31.1 years, respectively. Forty-seven cases were second cancers, 6 were third, and 1 was fourth. For survivors of childhood cancer, the overall SIR for renal cancer was 4.52 (95% CI: 3.39-5.89). The 5-year overall survival rate after development of subsequent renal cancer was 73% (95% CI: 58%-83%). Renal cancer occurs 4.5 times more frequently in childhood cancer survivors than in the general population, necessitating long-term care considerations.
Asunto(s)
Supervivientes de Cáncer , Neoplasias Renales , Neoplasias Primarias Secundarias , Programa de VERF , Humanos , Femenino , Masculino , Supervivientes de Cáncer/estadística & datos numéricos , Neoplasias Renales/epidemiología , Neoplasias Renales/mortalidad , Niño , Adolescente , Preescolar , Adulto , Neoplasias Primarias Secundarias/epidemiología , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/mortalidad , Incidencia , Adulto Joven , Lactante , Tasa de Supervivencia , Neoplasias/epidemiología , Neoplasias/mortalidad , Estados Unidos/epidemiologíaRESUMEN
In 1985, Bill Brownell and colleagues published the remarkable observation that cochlear outer hair cells (OHCs) express voltage-driven mechanical motion: electromotility. They proposed OHC electromotility as the mechanism for the elusive "cochlear amplifier" required to explain the sensitivity of mammalian hearing. The finding and hypothesis stimulated an explosion of experiments that have transformed our understanding of cochlear mechanics and physiology, the evolution of hair cell structure and function, and audiology. Here, we bring together examples of current research that illustrate the continuing impact of the discovery of OHC electromotility.
Asunto(s)
Cóclea , Células Ciliadas Auditivas Externas , Animales , Células Ciliadas Auditivas Externas/fisiología , Audición/fisiología , MamíferosRESUMEN
Vestibular hair cells transmit information about head position and motion across synapses to primary afferent neurons. At some of these synapses, the afferent neuron envelopes the hair cell, forming an enlarged synaptic terminal called a calyx. The vestibular hair cell-calyx synapse supports a mysterious form of electrical transmission that does not involve gap junctions, termed nonquantal transmission (NQT). The NQT mechanism is thought to involve the flow of ions from the presynaptic hair cell to the postsynaptic calyx through low-voltage-activated channels driven by changes in cleft [K+] as K+ exits the hair cell. However, this hypothesis has not been tested with a quantitative model and the possible role of an electrical potential in the cleft has remained speculative. Here, we present a computational model that captures experimental observations of NQT and identifies features that support the existence of an electrical potential (Ï) in the synaptic cleft. We show that changes in cleft Ï reduce transmission latency and illustrate the relative contributions of both cleft [K+] and Ï to the gain and phase of NQT. We further demonstrate that the magnitude and speed of NQT depend on calyx morphology and that increasing calyx height reduces action potential latency in the calyx afferent. These predictions are consistent with the idea that the calyx evolved to enhance NQT and speed up vestibular signals that drive neural circuits controlling gaze, balance, and orientation.
Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Células Ciliadas Vestibulares/fisiología , Cloruro de Potasio , Sinapsis/fisiología , Potenciales de Acción/fisiología , Transmisión Sináptica/fisiologíaRESUMEN
PURPOSE: Best practices recommend promoting the use of the home language and allowing caregivers to choose the language(s) that they want to use with their child who is deaf or hard of hearing (DHH). We examined whether Spanish-speaking caregivers of children who are DHH receive professional recommendations on oral bilingualism that follow best practices. We also assessed whether professional recommendations, caregiver beliefs, and language practices had an impact on child language(s) proficiency. METHOD: Sixty caregivers completed a questionnaire on demographic questions, language(s) use and recommendations, beliefs on bilingualism, and child language proficiency measures in English, Spanish, and American Sign Language (ASL). Professional recommendations on oral bilingualism were reported descriptively, and linear regression was used to identify the predictors of child language(s) proficiency. RESULTS: We found that only 23.3% of the caregivers were actively encouraged to raise their child orally bilingual. Language practices predicted child proficiency in each language (English, Spanish, and ASL), but professional recommendations and caregiver beliefs did not. CONCLUSIONS: Our results revealed that most caregivers received recommendations that do not follow current best practices. Professional training is still needed to promote bilingualism and increase cultural competence when providing services to caregivers who speak languages different from English. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.21644846.
Asunto(s)
Sordera , Pérdida Auditiva , Multilingüismo , Personas con Deficiencia Auditiva , Niño , Humanos , Estados Unidos , Cuidadores , Lenguaje InfantilRESUMEN
Mitochondria supply energy in the form of ATP to drive a plethora of cellular processes. In heart and liver cells, mitochondria occupy over 20% of the cellular volume and the major need for ATP is easily identifiable - i.e., to drive cross-bridge recycling in cardiac cells or biosynthetic machinery in liver cells. In vestibular and cochlear hair cells the overall cellular mitochondrial volume is much less, and mitochondria structure varies dramatically in different regions of the cell. The regional demands for ATP and cellular forces that govern mitochondrial structure and localization are not well understood. Below we review our current understanding of the heterogeneity of form and function in hair cell mitochondria. A particular focus of this review will be on regional specialization in vestibular hair cells, where large mitochondria are found beneath the cuticular plate in close association with the striated organelle. Recent findings on the role of mitochondria in hair cell death and aging are covered along with potential therapeutic approaches. Potential avenues for future research are discussed, including the need for integrated computational modeling of mitochondrial function in hair cells and the vestibular afferent calyx.
Asunto(s)
Células Ciliadas Vestibulares , Vestíbulo del Laberinto , Células Ciliadas Vestibulares/fisiología , Células Ciliadas Auditivas , Mitocondrias , Adenosina TrifosfatoRESUMEN
The electromechanical coupling exhibited by cochlear outer hair cells is a remarkable biophysical phenomenon. These specialized cells generate forces at acoustic frequencies and enable high-frequency hearing in mammals. While there has been significant progress since the discovery of electromotility - including the discovery of the motor protein prestin - we still do not have a clear picture of how electromotility works. A particularly vexing problem is how forces, generated by a membrane-based motor, are rapidly transmitted to the underlying cytoskeleton to enable force generation on the microsecond time scales required for amplification of acoustic signals. Here we approach the problem of electromotility from the perspective of soft matter physics in light of recent ultrastructural findings from 3D electron tomography studies on outer hair cells immobilized by high-pressure freezing. We then survey our understanding of prestin-membrane and prestin-cytoskeletal interactions in the context recently published cryoelectron microscopy (cryo-EM) structures of prestin. This will lead to the proposal of a new conceptual model of electromotility consistent with conformational states observed in the pillar proteins and actin filaments. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Asunto(s)
Células Ciliadas Auditivas Externas , Proteínas Motoras Moleculares , Animales , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Citoesqueleto/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Mamíferos/metabolismo , Proteínas Motoras Moleculares/metabolismo , FísicaRESUMEN
Persistently elevated absolute neutrophil counts during maintenance for acute lymphoblastic leukemia is a risk factor for relapse and may be related to wild-type thiopurine methyltransferase activity and overly efficient shunting of 6-mercaptopurine to hepatotoxic metabolites (6-methylmercaptopurine nucleotides), leading to low 6-thioguanine nucleotides. 6-mercaptopurine is also metabolized by xanthine oxidase, and therefore allopurinol, an inhibitor of xanthine oxidase, allows for increased 6-thioguanine nucleotides and decreased 6-methylmercaptopurine nucleotide. Here, we report our experience with allopurinol for persistently elevated absolute neutrophil count or hepatotoxicity and suggest an algorithmic approach for checking thiopurine metabolites and initiating allopurinol in acute lymphoblastic leukemia maintenance.
Asunto(s)
Alopurinol , Leucemia-Linfoma Linfoblástico de Células Precursoras , Alopurinol/uso terapéutico , Niño , Humanos , Mercaptopurina/metabolismo , Nucleótidos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Tioguanina/metabolismo , Xantina OxidasaRESUMEN
Disability is an important and often overlooked component of diversity. Individuals with disabilities bring a rare perspective to science, technology, engineering, mathematics, and medicine (STEMM) because of their unique experiences approaching complex issues related to health and disability, navigating the healthcare system, creatively solving problems unfamiliar to many individuals without disabilities, managing time and resources that are limited by physical or mental constraints, and advocating for themselves and others in the disabled community. Yet, individuals with disabilities are underrepresented in STEMM. Professional organizations can address this underrepresentation by recruiting individuals with disabilities for leadership opportunities, easing financial burdens, providing equal access, fostering peer-mentor groups, and establishing a culture of equity and inclusion spanning all facets of diversity. We are a group of deaf and hard-of-hearing (D/HH) engineers, scientists, and clinicians, most of whom are active in clinical practice and/or auditory research. We have worked within our professional societies to improve access and inclusion for D/HH individuals and others with disabilities. We describe how different models of disability inform our understanding of disability as a form of diversity. We address heterogeneity within disabled communities, including intersectionality between disability and other forms of diversity. We highlight how the Association for Research in Otolaryngology has supported our efforts to reduce ableism and promote access and inclusion for D/HH individuals. We also discuss future directions and challenges. The tools and approaches discussed here can be applied by other professional organizations to include individuals with all forms of diversity in STEMM.
RESUMEN
Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall. The subsurface cisterna (SSC) is a highly prominent feature, and we report that the SSC membranes and lumen possess hexagonally ordered arrays of particles. We also find the SSC is tightly connected to adjacent actin filaments by short filamentous protein connections. Pillar proteins that join the plasma membrane to the cytoskeleton appear as variable structures considerably thinner than actin filaments and significantly more flexible than actin-SSC links. The structurally rich organization and rigidity of the SSC coupled with apparently weaker mechanical connections between the plasma membrane (PM) and cytoskeleton reveal that the membrane-cytoskeletal architecture of the OHC lateral wall is more complex than previously appreciated. These observations are important for our understanding of OHC mechanics and need to be considered in computational models of OHC electromotility that incorporate subcellular features.
RESUMEN
The motor protein prestin is a member of the SLC26 family of anion antiporters and is essential to the electromotility of cochlear outer hair cells and for hearing. The only direct inhibitor of electromotility and the associated charge transfer is salicylate, possibly through direct interaction with an anion-binding site on prestin. In a screen to identify other inhibitors of prestin activity, we explored the effect of the non-steroid anti-inflammatory drug diflunisal, which is a derivative of salicylate. We recorded prestin activity by whole-cell patch clamping HEK cells transiently expressing prestin and mouse outer hair cells. We monitored the impact of diflunisal on the prestin-dependent non-linear capacitance and electromotility. We found that diflunisal triggers two prestin-associated effects: a chloride independent increase in the surface area and the specific capacitance of the membrane, and a chloride dependent inhibition of the charge transfer and the electromotility in outer hair cells. We conclude that diflunisal affects the cell membrane organization and inhibits prestin-associated charge transfer and electromotility at physiological chloride concentrations. The inhibitory effects on hair cell function are noteworthy given the proposed use of diflunisal to treat neurodegenerative diseases.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Cloruros/metabolismo , Diflunisal/farmacología , Proteínas Motoras Moleculares/antagonistas & inhibidores , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Células Cultivadas , Células HEK293 , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Humanos , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas Motoras Moleculares/metabolismoRESUMEN
An ongoing challenge in biomedical research is the search for simple, yet robust assays using 3D cell cultures for toxicity screening. This study addresses that challenge with a novel spheroid assay, wherein spheroids, formed by magnetic 3D bioprinting, contract immediately as cells rearrange and compact the spheroid in relation to viability and cytoskeletal organization. Thus, spheroid size can be used as a simple metric for toxicity. The goal of this study was to validate spheroid contraction as a cytotoxic endpoint using 3T3 fibroblasts in response to 5 toxic compounds (all-trans retinoic acid, dexamethasone, doxorubicin, 5'-fluorouracil, forskolin), sodium dodecyl sulfate (+control), and penicillin-G (-control). Real-time imaging was performed with a mobile device to increase throughput and efficiency. All compounds but penicillin-G significantly slowed contraction in a dose-dependent manner (Z' = 0.88). Cells in 3D were more resistant to toxicity than cells in 2D, whose toxicity was measured by the MTT assay. Fluorescent staining and gene expression profiling of spheroids confirmed these findings. The results of this study validate spheroid contraction within this assay as an easy, biologically relevant endpoint for high-throughput compound screening in representative 3D environments.
Asunto(s)
Antineoplásicos/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Esferoides Celulares/efectos de los fármacos , Células 3T3 , Animales , Antibacterianos/toxicidad , Técnicas de Cultivo de Célula , Ensayos Analíticos de Alto Rendimiento/instrumentación , Magnetismo , Ratones , Microscopía Fluorescente , Penicilina G/toxicidad , Dodecil Sulfato de Sodio/toxicidad , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , TranscriptomaRESUMEN
Multiple myeloma (MM) is a B lymphocyte malignancy that remains incurable despite extensive research efforts. This is due, in part, to frequent disease recurrences associated with the persistence of myeloma cancer stem cells (mCSCs). Bone marrow mesenchymal stromal cells (BMSCs) play critical roles in supporting mCSCs through genetic or biochemical alterations. Previously, we identified mechanical distinctions between BMSCs isolated from MM patients (mBMSCs) and those present in the BM of healthy individuals (nBMSCs). These properties of mBMSC contributed to their ability to preferentially support mCSCs. To further illustrate mechanisms underlying the differences between mBMSCs and nBMSCs, here we report that (i) mBMSCs express an abnormal, constitutively high level of phosphorylated Myosin II, which leads to stiffer membrane mechanics, (ii) mBMSCs are more sensitive to SDF-1α-induced activation of MYL2 through the G(i./o)-PI3K-RhoA-ROCK-Myosin II signaling pathway, affecting Young's modulus in BMSCs and (iii) activated Myosin II confers increased cell contractile potential, leading to enhanced collagen matrix remodeling and promoting the cell-cell interaction between mCSCs and mBMSCs. Together, our findings suggest that interfering with SDF-1α signaling may serve as a new therapeutic approach for eliminating mCSCs by disrupting their interaction with mBMSCs.
Asunto(s)
Médula Ósea/patología , Quimiocina CXCL12/metabolismo , Células Madre Mesenquimatosas/patología , Mieloma Múltiple/patología , Miosina Tipo II/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Western Blotting , Médula Ósea/metabolismo , Estudios de Casos y Controles , Adhesión Celular , Proliferación Celular , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Mieloma Múltiple/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transducción de Señal , Células Tumorales CultivadasRESUMEN
The aortic valve consists of valvular interstitial cells (VICs) and endothelial cells (VECs). While these cells are understood to work synergistically to maintain leaflet structure and valvular function, few co-culture models of these cell types exist. In this study, aortic valve co-cultures (AVCCs) were assembled using magnetic levitation and cultured for 3 days. Immunohistochemistry and quantitative reverse-transcriptase polymerase chain reaction were used to assess the maintenance of cellular phenotype and function, and the formation of extracellular matrix. AVCCs stained positive for CD31 and α-smooth muscle actin (αSMA), demonstrating that the phenotype was maintained. Functional markers endothelial nitric oxide synthase (eNOS), von Willebrand factor (VWF) and prolyl-4-hydroxylase were present. Extracellular matrix components collagen type I, laminin and fibronectin also stained positive, with reduced gene expression of these proteins in three dimensions compared to two dimensions. Genes for collagen type I, lysyl oxidase and αSMA were expressed less in AVCCs than in 2-D cultures, indicating that VICs are quiescent. Co-localization of CD31 and αSMA in the AVCCs suggests that endothelial-mesenchymal transdifferentiation might be occurring. Differences in VWF and eNOS in VECs cultured in two and three dimensions also suggests that the AVCCs possibly have anti-thrombotic potential. Overall, a co-culture model of the aortic valve was designed, and serves as a basis for future experiments to understand heart valve biology.
Asunto(s)
Válvula Aórtica/citología , Técnicas de Cocultivo/métodos , Fenómenos Magnéticos , Modelos Biológicos , Animales , Biomarcadores/metabolismo , Células Endoteliales/citología , Matriz Extracelular/metabolismo , Humanos , Inmunohistoquímica , Fenotipo , Sus scrofaRESUMEN
There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures.
Asunto(s)
Movimiento Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ibuprofeno/toxicidad , Concentración 50 Inhibidora , Microscopía/métodos , ToxicologíaRESUMEN
A longstanding goal in biomedical research has been to create organotypic cocultures that faithfully represent native tissue environments. There is presently great interest in representative culture models of the lung, which is a particularly challenging tissue to recreate in vitro. This study used magnetic levitation in conjunction with magnetic nanoparticles as a means of creating an organized three-dimensional (3D) coculture of the bronchiole that sequentially layers cells in a manner similar to native tissue architecture. The 3D coculture model was assembled from four human cell types in the bronchiole: endothelial cells, smooth muscle cells (SMCs), fibroblasts, and epithelial cells (EpiCs). This study represents the first effort to combine these particular cell types into an organized bronchiole coculture. These cell layers were first cultured in 3D by magnetic levitation, and then manipulated into contact with a custom-made magnetic pen, and again cultured for 48 h. Hematoxylin and eosin staining of the resulting coculture showed four distinct layers within the 3D coculture. Immunohistochemistry confirmed the phenotype of each of the four cell types and showed organized extracellular matrix formation, particularly, with collagen type I. Positive stains for CD31, von Willebrand factor, smooth muscle α-actin, vimentin, and fibronectin demonstrate the maintenance of the phenotype for endothelial cells, SMCs, and fibroblasts. Positive stains for mucin-5AC, cytokeratin, and E-cadherin after 7 days with and without 1% fetal bovine serum showed that EpiCs maintained the phenotype and function. This study validates magnetic levitation as a method for the rapid creation of organized 3D cocultures that maintain the phenotype and induce extracellular matrix formation.
Asunto(s)
Bronquiolos/citología , Técnicas de Cocultivo/métodos , Magnetismo , Animales , Bovinos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Coloración y EtiquetadoRESUMEN
Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.
Asunto(s)
Proteínas de Transporte de Anión/análisis , Biotinilación , Membrana Celular/química , Proteínas Recombinantes de Fusión/análisis , Secuencia de Aminoácidos , Proteínas de Transporte de Anión/química , Proteínas de Transporte de Anión/genética , Biotina/química , Biotina/metabolismo , Células HEK293 , Humanos , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Receptores del Factor de Crecimiento Derivado de Plaquetas/química , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Transportadores de SulfatoRESUMEN
Hydrogels that solidify in response to a dual, physical and chemical, mechanism upon temperature increase were fabricated and characterized. The hydrogels were based on N-isopropylacrylamide, which renders them thermoresponsive, and contained covalently cross-linkable moieties in the macromers. The effects of the macromer end group, acrylate or methacrylate, and the fabrication conditions on the degradative and swelling properties of the hydrogels were investigated. The hydrogels exhibited higher swelling below their lower critical solution temperature (LCST). When immersed in cell culture medium at physiological temperature, which was above their LCST, hydrogels showed constant swelling and no degradation over 8 weeks, with the methacrylated hydrogels showing greater swelling than their acrylated analogs. In addition, hydrogels immersed in cell culture medium under the same conditions showed lower swelling compared with phosphate-buffered saline. The interplay between chemical cross-linking and thermally induced phase separation affected the swelling characteristics of the hydrogels in different media. Mesenchymal stem cells encapsulated in the hydrogels in vitro were viable over 3 weeks and markers of osteogenic differentiation were detected when the cells were cultured with osteogenic supplements. Hydrogel mineralization in the absence of cells was observed in cell culture medium with the addition of fetal bovine serum and ß-glycerol phosphate. The results suggest that these hydrogels may be suitable as carriers for cell delivery in tissue engineering.
Asunto(s)
Acrilamidas/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Ensayo de Materiales/métodos , Células Madre Mesenquimatosas/efectos de los fármacos , Temperatura , Acrilamidas/farmacología , Animales , Tampones (Química) , Calcio/análisis , Bovinos , Sistema Libre de Células/efectos de los fármacos , Células Cultivadas , Células Inmovilizadas/citología , Células Inmovilizadas/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Medios de Cultivo/farmacología , Hidrogeles/química , Masculino , Células Madre Mesenquimatosas/citología , Microscopía Fluorescente , Minerales/metabolismo , Osteogénesis/efectos de los fármacos , Ratas , Ratas Endogámicas F344RESUMEN
It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 x 10(8) primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19+ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.