Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39199386

RESUMEN

Several natural compounds have been found to act as PPARγ agonists, thus regulating numerous biological processes, including the metabolism of carbohydrates and lipids, cell proliferation and differentiation, angiogenesis, and inflammation. Recently, Cladosporols, secondary metabolites purified from the fungus Cladosporium tenuissimum, have been demonstrated to display an efficient ability to control cell proliferation in human colorectal and prostate cancer cells through a PPARγ-mediated modulation of gene expression. In addition, Cladosporols exhibited a strong anti-adipogenetic activity in 3T3-L1 murine preadipocytes, preventing their in vitro differentiation into mature adipocytes. These data interestingly point out that the interaction between Cladosporols and PPARγ, in the milieu of different cells or tissues, might generate a wide range of beneficial effects for the entire organism affected by diabetes, obesity, inflammation, and cancer. This review explores the molecular mechanisms by which the Cladosporol/PPARγ complex may simultaneously interfere with a dysregulated lipid metabolism and cancer promotion and progression, highlighting the potential therapeutic benefits of Cladosporols for human health.


Asunto(s)
PPAR gamma , PPAR gamma/metabolismo , Humanos , Animales , Metabolismo de los Lípidos , Ratones , Proliferación Celular/efectos de los fármacos , Células 3T3-L1
2.
Biochem Pharmacol ; 222: 116097, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428827

RESUMEN

OBJECTIVES: Chemoprevention, consisting of the administration of natural and/or synthetic compounds, appears to be an alternative way to common therapeutical approaches to preventing the occurrence of various cancers. Cladosporols, secondary metabolites from Cladosporium tenuissimum, showed a powerful ability in controlling human colon cancer cell proliferation through a peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Hence, we carried out experiments to verify the anticancer properties of cladosporols in human prostate cancer cells. Prostate cancer represents one of the most widespread tumors in which several risk factors play a role in determining its high mortality rate in men. MATERIALS AND METHODS: We assessed, by viability assays, PPARγ silencing and overexpression experiments and western blotting analysis, the anticancer properties of cladosporols in cancer prostate cell lines. RESULTS: Cladosporols A and B selectively inhibited the proliferation of human prostate PNT-1A, LNCaP and PC-3 cells and their most impactful antiproliferative ability towards PC-3 prostate cancer cells, was mediated by PPARγ modulation. Moreover, the anticancer ability of cladosporols implied a sustained apoptosis. Finally, cladosporols negatively regulated the expression of enzymes involved in the biosynthesis of fatty acids and cholesterol, thus enforcing the relationship between prostate cancer development and lipid metabolism dysregulation. CONCLUSION: This is the first work, to our knowledge, in which the role of cladosporols A and B was disclosed in prostate cancer cells. Importantly, the present study highlighted the potential of cladosporols as new therapeutical tools, which, interfering with cell proliferation and lipid pathway dysregulation, may control prostate cancer initiation and progression.


Asunto(s)
Naftalenos , PPAR gamma , Neoplasias de la Próstata , Masculino , Humanos , PPAR gamma/metabolismo , Células PC-3 , Neoplasias de la Próstata/metabolismo , Apoptosis , Proliferación Celular , Lípidos , Línea Celular Tumoral
3.
Microorganisms ; 10(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35744679

RESUMEN

Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and ß-galactosidase.

4.
Molecules ; 26(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34684876

RESUMEN

The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Dedos de Zinc , Animales , Humanos , Neoplasias/genética , Dominios y Motivos de Interacción de Proteínas
5.
Biochim Biophys Acta Gen Subj ; 1865(11): 129973, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34352342

RESUMEN

BACKGROUND: Obesity and type 2 diabetes mellitus, which are widespread throughout the world, require therapeutic interventions targeted to solve clinical problems (insulin resistance, hyperglycaemia, dyslipidaemia and steatosis). Several natural compounds are now part of the therapeutic repertoire developed to better manage these pathological conditions. Cladosporols, secondary metabolites from the fungus Cladosporium tenuissimum, have been characterised for their ability to control cell proliferation in human colon cancer cell lines through peroxisome proliferator-activated receptor gamma (PPARγ)-mediated modulation of gene expression. Here, we report data concerning the ability of cladosporols to regulate the differentiation of murine 3T3-L1 preadipocytes. METHODS: Cell counting and MTT assay were used for analysing cell proliferation. RT-PCR and Western blotting assays were performed to evaluate differentiation marker expression. Cell migration was analysed by wound-healing assay. RESULTS: We showed that cladosporol A and B inhibited the storage of lipids in 3T3-L1 mature adipocytes, while their administration did not affect the proliferative ability of preadipocytes. Moreover, both cladosporols downregulated mRNA and protein levels of early (C/EBPα and PPARγ) and late (aP2, LPL, FASN, GLUT-4, adiponectin and leptin) differentiation markers of adipogenesis. Finally, we found that proliferation and migration of HT-29 colorectal cancer cells were inhibited by conditioned medium from cladosporol-treated 3T3-L1 cells compared with the preadipocyte conditioned medium. CONCLUSIONS: To our knowledge, this is the first report describing that cladosporols inhibit in vitro adipogenesis and through this inhibition may interfere with HT-29 cancer cell growth and migration. GENERAL SIGNIFICANCE: Cladosporols are promising tools to inhibit concomitantly adipogenesis and control colon cancer initiation and progression.


Asunto(s)
Naftoles/farmacología , PPAR gamma/agonistas , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Naftoles/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...