Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39134382

RESUMEN

Action potential propagation along myelinated axons requires clustered voltage-gated sodium and potassium channels. These channels must be restricted to nodes of Ranvier where the action potential is regenerated. Several mechanisms have evolved to facilitate and ensure the correct assembly and stabilization of these essential axonal domains. This review highlights the current understanding of the axon-intrinsic and glial-extrinsic mechanisms that control the formation and maintenance of the nodes of Ranvier in both the peripheral (PNS) and central (CNS) nervous systems.

2.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39078369

RESUMEN

The evolution of ion channel clustering at nodes of Ranvier enabled the development of complex vertebrate nervous systems. At mammalian nodes, the K+ leak channels TRAAK and TREK-1 underlie membrane repolarization. Despite the molecular similarities between nodes and the axon initial segment (AIS), TRAAK and TREK-1 are reportedly node-specific, suggesting a unique clustering mechanism. However, we show that TRAAK and TREK-1 are enriched at both nodes and AIS through a common mechanism. We identified a motif near the C-terminus of TRAAK that is necessary and sufficient for its clustering. The motif first evolved among cartilaginous fish. Using AnkyrinG (AnkG) conditional knockout mice, CRISPR/Cas9-mediated disruption of AnkG, co-immunoprecipitation, and surface recruitment assays, we show that TRAAK forms a complex with AnkG and that AnkG is necessary for TRAAK's AIS and nodal clustering. In contrast, TREK-1's clustering requires TRAAK. Our results expand the repertoire of AIS and nodal ion channel clustering mechanisms and emphasize AnkG's central role in assembling excitable domains.


Asunto(s)
Ancirinas , Axones , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem , Animales , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Axones/metabolismo , Ratones , Ancirinas/metabolismo , Ancirinas/genética , Nódulos de Ranvier/metabolismo , Humanos , Secuencias de Aminoácidos , Evolución Molecular
3.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826451

RESUMEN

Vertebrate nervous systems use the axon initial segment (AIS) to initiate action potentials and maintain neuronal polarity. The microtubule-associated protein tripartite motif containing 46 (TRIM46) was reported to regulate axon specification, AIS assembly, and neuronal polarity through the bundling of microtubules in the proximal axon. However, these claims are based on TRIM46 knockdown in cultured neurons. To investigate TRIM46 function in vivo , we examined TRIM46 knockout mice. Contrary to previous reports, we find that TRIM46 is dispensable for AIS formation and maintenance, and axon specification. TRIM46 knockout mice are viable, have normal behavior, and have normal brain structure. Thus, TRIM46 is not required for AIS formation, axon specification, or nervous system function. We also show TRIM46 enrichment in the first ∼100 µm of axon occurs independently of ankyrinG (AnkG), although AnkG is required to restrict TRIM46 only to the AIS. Our results suggest an unidentified protein may compensate for loss of TRIM46 in vivo and highlight the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function. SIGNIFICANCE STATEMENT: A healthy nervous system requires the polarization of neurons into structurally and functionally distinct compartments, which depends on both the axon initial segment (AIS) and the microtubule cytoskeleton. In contrast to previous reports, we show that the microtubule-associated protein TRIM46 is not required for axon specification or AIS formation in mice. Our results emphasize the need for further investigation of the mechanisms by which the AIS and microtubules interact to shape neuronal structure and function.

4.
Nat Neurosci ; 27(8): 1545-1554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849524

RESUMEN

In the mouse embryonic forebrain, developmentally distinct oligodendrocyte progenitor cell populations and their progeny, oligodendrocytes, emerge from three distinct regions in a spatiotemporal gradient from ventral to dorsal. However, the functional importance of this oligodendrocyte developmental heterogeneity is unknown. Using a genetic strategy to ablate dorsally derived oligodendrocyte lineage cells (OLCs), we show here that the areas in which dorsally derived OLCs normally reside in the adult central nervous system become populated and myelinated by OLCs of ventral origin. These ectopic oligodendrocytes (eOLs) have a distinctive gene expression profile as well as subtle myelination abnormalities. The failure of eOLs to fully assume the role of the original dorsally derived cells results in locomotor and cognitive deficits in the adult animal. This study reveals the importance of developmental heterogeneity within the oligodendrocyte lineage and its importance for homeostatic brain function.


Asunto(s)
Encéfalo , Linaje de la Célula , Oligodendroglía , Animales , Oligodendroglía/fisiología , Ratones , Encéfalo/citología , Encéfalo/embriología , Linaje de la Célula/fisiología , Diferenciación Celular/fisiología , Ratones Transgénicos , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología
5.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617359

RESUMEN

The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice. During development, AnkG is also expressed at comparable levels in oligodendrocytes and facilitates the efficient assembly of paranodal junctions. However, the physiological roles of glial AnkG in the mature nervous system, and its contributions to BD-like phenotypes, remain unexplored. Here, we generated oligodendroglia-specific AnkG conditional knockout mice and observed the destabilization of axoglial interactions in aged but not young adult mice. In addition, these mice exhibited profound histological, electrophysiological, and behavioral pathophysiologies. Unbiased translatomic profiling revealed potential compensatory machineries. These results highlight the critical functions of glial AnkG in maintaining proper axoglial interactions throughout aging and suggests a previously unrecognized contribution of oligodendroglial AnkG to neuropsychiatric disorders.

6.
J Physiol ; 602(6): 1127-1145, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38441922

RESUMEN

Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (ß4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of ß4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific ß4 spectrin conditional knockout mouse, we show that ß4 spectrin does not contribute to muscle function. In addition, we show ß4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, ß1 and ß2 spectrins are found in skeletal muscle, with α2 and ß1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and ß2 spectrins had no effect on muscle health, function or the enrichment of ß1 spectrin at the NMJ. Muscle specific deletion of ß1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle ß1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding ß4 spectrin) is neurogenic in origin. ß1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that ß1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.


Asunto(s)
Unión Neuromuscular , Canales de Sodio , Espectrina , Animales , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares , Unión Neuromuscular/metabolismo , Espectrina/genética , Espectrina/análisis , Espectrina/metabolismo , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...