Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 127(9): 1922-1931, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36853329

RESUMEN

Macromolecules organize themselves into discrete membrane-less compartments. Mounting evidence has suggested that nucleosomes as well as DNA itself can undergo clustering or condensation to regulate genomic activity. Current in vitro condensation studies provide insight into the physical properties of condensates, such as surface tension and diffusion. However, methods that provide the resolution needed for complex kinetic studies of multicomponent condensation are desired. Here, we use a supported lipid bilayer platform in tandem with total internal reflection microscopy to observe the two-dimensional movement of DNA and nucleosomes at the single-molecule resolution. This dimensional reduction from three-dimensional studies allows us to observe the initial condensation events and dissolution of these early condensates in the presence of physiological condensing agents. Using polyamines, we observed that the initial condensation happens on a time scale of minutes while dissolution occurs within seconds upon charge inversion. Polyamine valency, DNA length, and GC content affect the threshold polyamine concentration for condensation. Protein-based nucleosome condensing agents, HP1α and Ki-67, have much lower threshold concentrations for condensation than charge-based condensing agents, with Ki-67 being the most effective, requiring as low as 100 pM for nucleosome condensation. In addition, we did not observe condensate dissolution even at the highest concentrations of HP1α and Ki-67 tested. We also introduce a two-color imaging scheme where nucleosomes of high density labeled in one color are used to demarcate condensate boundaries and identical nucleosomes of another color at low density can be tracked relative to the boundaries after Ki-67-mediated condensation. Our platform should enable the ultimate resolution of single molecules in condensation dynamics studies of chromatin components under defined physicochemical conditions.


Asunto(s)
Nucleosomas , Poliaminas , Antígeno Ki-67 , Cinética , Imagen Individual de Molécula , ADN/química , Cromatina
2.
Nature ; 614(7947): 237-238, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697726

Asunto(s)
Emociones
4.
Nat Commun ; 13(1): 7833, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539424

RESUMEN

During lagging strand synthesis, DNA Ligase 1 (Lig1) cooperates with the sliding clamp PCNA to seal the nicks between Okazaki fragments generated by Pol δ and Flap endonuclease 1 (FEN1). We present several cryo-EM structures combined with functional assays, showing that human Lig1 recruits PCNA to nicked DNA using two PCNA-interacting motifs (PIPs) located at its disordered N-terminus (PIPN-term) and DNA binding domain (PIPDBD). Once Lig1 and PCNA assemble as two-stack rings encircling DNA, PIPN-term is released from PCNA and only PIPDBD is required for ligation to facilitate the substrate handoff from FEN1. Consistently, we observed that PCNA forms a defined complex with FEN1 and nicked DNA, and it recruits Lig1 to an unoccupied monomer creating a toolbelt that drives the transfer of DNA to Lig1. Collectively, our results provide a structural model on how PCNA regulates FEN1 and Lig1 during Okazaki fragments maturation.


Asunto(s)
ADN Polimerasa III , Replicación del ADN , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , ADN Polimerasa III/metabolismo , Ligasas/metabolismo , ADN/metabolismo , Endonucleasas de ADN Solapado/metabolismo , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo
5.
Nat Commun ; 11(1): 1109, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111820

RESUMEN

In eukaryotes, DNA polymerase δ (Pol δ) bound to the proliferating cell nuclear antigen (PCNA) replicates the lagging strand and cooperates with flap endonuclease 1 (FEN1) to process the Okazaki fragments for their ligation. We present the high-resolution cryo-EM structure of the human processive Pol δ-DNA-PCNA complex in the absence and presence of FEN1. Pol δ is anchored to one of the three PCNA monomers through the C-terminal domain of the catalytic subunit. The catalytic core sits on top of PCNA in an open configuration while the regulatory subunits project laterally. This arrangement allows PCNA to thread and stabilize the DNA exiting the catalytic cleft and recruit FEN1 to one unoccupied monomer in a toolbelt fashion. Alternative holoenzyme conformations reveal important functional interactions that maintain PCNA orientation during synthesis. This work sheds light on the structural basis of Pol δ's activity in replicating the human genome.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Secuencias de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , ADN/metabolismo , ADN Polimerasa III/genética , Replicación del ADN , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/metabolismo , Holoenzimas , Humanos , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Subunidades de Proteína , Relación Estructura-Actividad
6.
J Vis Exp ; (151)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31609352

RESUMEN

Bulk methods measure the ensemble behavior of molecules, in which individual reaction rates of the underlying steps are averaged throughout the population. Single-molecule Förster resonance energy transfer (smFRET) provides a recording of the conformational changes taking place by individual molecules in real-time. Therefore, smFRET is powerful in measuring structural changes in the enzyme or substrate during binding and catalysis. This work presents a protocol for single-molecule imaging of the interaction of a four-way Holliday junction (HJ) and gap endonuclease I (GEN1), a cytosolic homologous recombination enzyme. Also presented are single-color and two-color alternating excitation (ALEX) smFRET experimental protocols to follow the resolution of the HJ by GEN1 in real-time. The kinetics of GEN1 dimerization are determined at the HJ, which has been suggested to play a key role in the resolution of the HJ and has remained elusive until now. The techniques described here can be widely applied to obtain valuable mechanistic insights of many enzyme-DNA systems.


Asunto(s)
ADN Cruciforme/metabolismo , Desoxirribonucleasa I/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Recombinación Homóloga , Humanos
7.
Nucleic Acids Res ; 47(18): e107, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31340015

RESUMEN

Real-time visualization of single-proteins or -complexes on nucleic acid substrates is an essential tool for characterizing nucleic acid binding proteins. Here, we present a novel surface-condition independent and high-throughput single-molecule optical imaging platform called 'DNA skybridge'. The DNA skybridge is constructed in a 3D structure with 4 µm-high thin quartz barriers in a quartz slide. Each DNA end is attached to the top of the adjacent barrier, resulting in the extension and immobilization of DNA. In this 3D structure, the bottom surface is out-of-focus when the target molecules on the DNA are imaged. Moreover, the DNA skybridge itself creates a thin Gaussian light sheet beam parallel to the immobilized DNA. This dual property allows for imaging a single probe-tagged molecule moving on DNA while effectively suppressing interference with the surface and background signals from the surface.


Asunto(s)
ADN/ultraestructura , Ensayos Analíticos de Alto Rendimiento/métodos , Ácidos Nucleicos Inmovilizados/ultraestructura , Imagen Individual de Molécula/métodos , Nanotecnología/métodos , Imagen Óptica/métodos
8.
J Chromatogr A ; 1602: 341-349, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31204039

RESUMEN

Protein purification by affinity chromatography relies primarily on the interaction of a fused-tag to the protein of interest. Here, we describe a tag-free affinity method that employs functional selection interactions to a broad range of proteins. To achieve this, we coupled human DNA-clamp proliferating cell nuclear antigen (PCNA) that interacts with over one hundred proteins to an agarose resin. We demonstrate the versatility of our PCNA-Agarose column at various chromatographic steps by purifying PCNA-binding proteins that are involved in DNA Replication (DNA polymerase δ, flap endonuclease 1 and DNA ligase 1), translesion DNA synthesis (DNA polymerases eta, kappa and iota) and genome stability (p15). We also show the competence of the PCNA-Agarose column to purify non-PCNA binding proteins by fusing the PCNA-binding motif of human p21 as an affinity tag. Finally, we establish that our PCNA-Agarose column is a suitable analytical method for characterizing the binding strength of PCNA-binding proteins. The conservation and homology of PCNA-like clamps will allow for the immediate extension of our method to other species.


Asunto(s)
Cromatografía de Afinidad/métodos , Antígeno Nuclear de Célula en Proliferación/aislamiento & purificación , Sefarosa/química , Tampones (Química) , ADN Polimerasa III/aislamiento & purificación , Reparación del ADN , Replicación del ADN , Humanos , Unión Proteica , Proteínas Recombinantes/aislamiento & purificación , Resinas Sintéticas/química
9.
Nat Commun ; 10(1): 2104, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068591

RESUMEN

Protein-induced fluorescence enhancement (PIFE) is a popular tool for characterizing protein-DNA interactions. PIFE has been explained by an increase in local viscosity due to the presence of the protein residues. This explanation, however, denies the opposite effect of fluorescence quenching. This work offers a perspective for understanding PIFE mechanism and reports the observation of a phenomenon that we name protein-induced fluorescence quenching (PIFQ), which exhibits an opposite effect to PIFE. A detailed characterization of these two fluorescence modulations reveals that the initial fluorescence state of the labeled mediator (DNA) determines whether this mediator-conjugated dye undergoes PIFE or PIFQ upon protein binding. This key role of the mediator DNA provides a protocol for the experimental design to obtain either PIFQ or PIFE, on-demand. This makes the arbitrary nature of the current experimental design obsolete, allowing for proper integration of both PIFE and PIFQ with existing bulk and single-molecule fluorescence techniques.


Asunto(s)
ADN/metabolismo , Colorantes Fluorescentes/química , Imagen Individual de Molécula/métodos , ADN/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/aislamiento & purificación , Endonucleasas de ADN Solapado/metabolismo , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Coloración y Etiquetado , Proteínas Virales/química , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo
10.
Nucleic Acids Res ; 47(4): 1935-1949, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30590761

RESUMEN

Human GEN1 is a cytosolic homologous recombination protein that resolves persisting four-way Holliday junctions (HJ) after the dissolution of the nuclear membrane. GEN1 dimerization has been suggested to play key role in the resolution of the HJ, but the kinetic details of its reaction remained elusive. Here, single-molecule FRET shows how human GEN1 binds the HJ and always ensures its resolution within the lifetime of the GEN1-HJ complex. GEN1 monomer generally follows the isomer bias of the HJ in its initial binding and subsequently distorts it for catalysis. GEN1 monomer remains tightly bound with no apparent dissociation until GEN1 dimer is formed and the HJ is fully resolved. Fast on- and slow off-rates of GEN1 dimer and its increased affinity to the singly-cleaved HJ enforce the forward reaction. Furthermore, GEN1 monomer binds singly-cleaved HJ tighter than intact HJ providing a fail-safe mechanism if GEN1 dimer or one of its monomers dissociates after the first cleavage. The tight binding of GEN1 monomer to intact- and singly-cleaved HJ empowers it as the last resort to process HJs that escape the primary mechanisms.


Asunto(s)
ADN Cruciforme/genética , Resolvasas de Unión Holliday/genética , Recombinación Genética , Dimerización , Endodesoxirribonucleasas/genética , Recombinación Homóloga/genética , Humanos , Membrana Nuclear/genética
11.
Nucleic Acids Res ; 46(6): 2956-2974, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29420814

RESUMEN

RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5'-single-stranded flap is cleaved by structure-specific 5'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.


Asunto(s)
Acetiltransferasas/genética , División del ADN , Replicación del ADN/genética , ADN/genética , Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Acetiltransferasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Proteínas de la Membrana/metabolismo , Unión Proteica , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Imagen Individual de Molécula/métodos , Especificidad por Sustrato
12.
Nat Commun ; 8: 15855, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28653660

RESUMEN

DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5'polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via 'phosphate steering', basic residues energetically steer an inverted ss 5'-flap through a gateway over FEN1's active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5'-flap specificity and catalysis, preventing genomic instability.


Asunto(s)
ADN/genética , Endonucleasas de ADN Solapado/metabolismo , Inestabilidad Genómica , Fosfatos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , ADN/química , ADN/metabolismo , Reparación del ADN , Replicación del ADN , Endonucleasas de ADN Solapado/química , Endonucleasas de ADN Solapado/genética , Humanos , Mutación , Fosfatos/química , Alineación de Secuencia , Especificidad por Sustrato
13.
Elife ; 62017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28230529

RESUMEN

Human flap endonuclease 1 (FEN1) and related structure-specific 5'nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5'nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually 'locks' protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.


Asunto(s)
ADN/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Especificidad por Sustrato
15.
J Bacteriol ; 194(22): 6337-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23105073

RESUMEN

Mycobacterium fortuitum is a member of the rapidly growing nontuberculous mycobacteria (NTM). It is ubiquitous in water and soil habitats, including hospital environments. M. fortuitum is increasingly recognized as an opportunistic nosocomial pathogen causing disseminated infection. Here we report the genome sequence of M. fortuitum subsp. fortuitum type strain DSM46621.


Asunto(s)
Genoma Bacteriano , Mycobacterium fortuitum/clasificación , Mycobacterium fortuitum/genética , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA