Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32157, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912468

RESUMEN

Electric Arc Furnaces (EAFs) play a pivotal part in the steel industry, offering a versatile of producing high-quality steel. This paper conducts an in-depth examination of the EAF, along with exploring mathematical modeling and optimization techniques pertinent to this furnace. Additionally, it delves into the global steel production capacity employing this technology, introduces different processes associated with EAF, scrutinizes the energy balance of EAFs, and provides an overview of numerical and simulation modeling in this context. The core focus of this extensive review is the diverse landscape of EAF simulation methods. It places particular emphasis on understanding the key components and stages of the EAF process, including charging, melting, refining, tapping, and slag removal. The review delves into the wide array of approaches and methodologies employed in EAF modeling, spanning from innovative computational fluid dynamics (CFD) and finite element analysis to the intricacies of mathematical and thermodynamic models. Furthermore, the paper underscores the importance of simulation in predicting and enhancing crucial aspects such as heat transfer, chemical reactions, and fluid dynamics within the EAF. By doing so, it contributes to the optimization of energy efficacy and the ultimate quality of steel produced in these furnaces. In conclusion, this review identifies gaps in existing knowledge and offers valuable recommendations for improving mathematical process models, underscoring the continuous efforts to enhance the efficiency, sustainability, and environmental impact of steel production processes. In conclusion, several techniques aimed at enhancing both production rates and the quality of the melting process in EAF have been put forward.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35957150

RESUMEN

Global technological advancements drive daily energy consumption, generating additional carbon-induced climate challenges. Modifying process parameters, optimizing design, and employing high-performance working fluids are among the techniques offered by researchers for improving the thermal efficiency of heating and cooling systems. This study investigates the heat transfer enhancement of hybrid "Al2O3-Cu/water" nanofluids flowing in a two-dimensional channel with semicircle ribs. The novelty of this research is in employing semicircle ribs combined with hybrid nanofluids in turbulent flow regimes. A computer modeling approach using a finite volume approach with k-ω shear stress transport turbulence model was used in these simulations. Six cases with varying rib step heights and pitch gaps, with Re numbers ranging from 10,000 to 25,000, were explored for various volume concentrations of hybrid nanofluids Al2O3-Cu/water (0.33%, 0.75%, 1%, and 2%). The simulation results showed that the presence of ribs enhanced the heat transfer in the passage. The Nusselt number increased when the solid volume fraction of "Al2O3-Cu/water" hybrid nanofluids and the Re number increased. The Nu number reached its maximum value at a 2 percent solid volume fraction for a Reynolds number of 25,000. The local pressure coefficient also improved as the Re number and volume concentration of "Al2O3-Cu/water" hybrid nanofluids increased. The creation of recirculation zones after and before each rib was observed in the velocity and temperature contours. A higher number of ribs was also shown to result in a larger number of recirculation zones, increasing the thermal performance.

3.
J Mol Liq ; 354: 118901, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309259

RESUMEN

Since the commencement of the novel Coronavirus, the disease has quickly turned into a worldwide crisis so that there has been growing attention in discovering possible hit compounds for tackling this pandemic. Discovering standard treatment strategies is a serious challenge because little information is available about this emerged infectious virus. Regarding the high impact of time, applying computational procedures to choose promising drugs from a catalog of licensed medications provides a precious chance for combat against the life-threatening disorder of COVID-19. Molecular dynamics (MD) simulation is a promising approach for assessing the binding affinity of ligand-receptor as well as observing the conformational trajectory of docked complexes over time. Given that many computational studies are performed using MD along with the molecular docking on various candidates as antiviral inhibitors of COVID-19 protease, there is a demand to conduct a comprehensive review of the most important studies to reveal and compare the potential introduced agents that this study covers this defect. In this context, the present review intends to prepare an overview of these studies by considering RMSD, RMSF, radius of gyration, binding free energy, and Solvent-Accessible Surface Area (SASA) as effective parameters for evaluation. The outcomes will offer a road map for adjusting antiviral inhibitors, which can facilitate the selection and development of drug candidates for use in the medical therapy. Finally, the molecular modeling approaches rendered by this study may be valuable for future computational studies.

4.
Comput Biol Med ; 123: 103816, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32658796

RESUMEN

Numerical simulations of the dispersion and deposition of poly-disperse particles in a patient-specific human nasal configuration are performed. Computed tomography (CT) images are used to create a realistic configuration of the nasal cavity and paranasal sinuses. The OpenFOAM software is used to perform unsteady Large Eddy Simulations (LES) with the dynamic sub-grid scale Smagorinsky model. For the numerical analysis of the particle motion, a Lagrangian particle tracking method is implemented. Two different nosepieces with clockwise inclinations of 45° and 90° with respect to the horizontal axis are connected to the nostrils. A sinusoidal pulsating airflow profile with a frequency of 45 Hz is imposed on the airflow which carries the particles. Flow partition analysis inside the sinuses show that ventilation of the sinuses is improved slightly when the 45° nosepiece is used instead of the 90° nosepiece. The flow partition into the right maxillary is improved from 0.22% to 0.25%. It is observed that a closed soft palate increases the aerosol deposition efficiency (DE) in the nasal cavity as compared to an open soft palate condition. The utilization of pulsating inflow leads to more uniform deposition pattern in the nasal airway and enhances the DE by 160% and 44.6%, respectively, for the cases with clockwise 45° and 90° nosepieces, respectively. The bi-directional pulsating drug delivery with the same particle size distribution and inflow rates as the PARI SINUS device results in higher total DEs with 45° nosepiece than with the 90°. Thus, the numerical simulation suggests that the 45° nosepiece is favorable in terms of the delivered dose.


Asunto(s)
Rociadores Nasales , Senos Paranasales , Administración Intranasal , Aerosoles , Simulación por Computador , Humanos , Cavidad Nasal/diagnóstico por imagen , Senos Paranasales/diagnóstico por imagen
5.
PLoS One ; 10(8): e0135004, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26267247

RESUMEN

In the current article, a combination of the differential transform method (DTM) and Padé approximation method are implemented to solve a system of nonlinear differential equations modelling the flow of a Newtonian magnetic lubricant squeeze film with magnetic induction effects incorporated. Solutions for the transformed radial and tangential momentum as well as solutions for the radial and tangential induced magnetic field conservation equations are determined. The DTM-Padé combined method is observed to demonstrate excellent convergence, stability and versatility in simulating the magnetic squeeze film problem. The effects of involved parameters, i.e. squeeze Reynolds number (N1), dimensionless axial magnetic force strength parameter (N2), dimensionless tangential magnetic force strength parameter (N3), and magnetic Reynolds number (Rem) are illustrated graphically and discussed in detail. Applications of the study include automotive magneto-rheological shock absorbers, novel aircraft landing gear systems and biological prosthetics.


Asunto(s)
Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...