Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(7): 239, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37337525

RESUMEN

Bacterial panicle blight (BPB) caused by Burkholderia glumae (BG) has become significantly more prevalent in the rice-growing regions of North India. Based on virulence screening and in vitro quantification of toxoflavin, the BG strains were classified as hyper- (BG1 and BG3), moderate- (BG2, BG4, BG6, BG8, and BG9), and hypo- (BG5, BG7, and BG10) virulent. Plant inoculation assays with cell-free culture filtrate revealed strains with higher toxoflavin-producing ability had higher virulence. Based on 16S rRNA sequence, 6 isolates from Uttar Pradesh were grouped in clad C1; whereas, clad C2 exhibited 4 isolates, two each from Delhi and Uttar Pradesh. Strain BG1 being the most virulent Indian strain from Uttar Pradesh was further profiled for 11 tox genes. We found all the 11 tox genes present in strain BG1. In toxRABCDE cluster, all tox genes showed high similarity to B. glumae BGR1 except toxB, whereas in toxFGHIJ cluster toxF, toxG, toxH and toxI shared maximum similarity to B. glumae 336gr-1. tox genes of BG1 exhibited homology as well as divergence with B. gladioli. The domain prediction and protein association network analysis indicated the possible involvement of tox genes in the toxoflavin biosynthesis. As per our knowledge, this is the first report in India on characterization of tox genes cluster in B. glumae. Altogether, our study unravels a reliable method for identifying and characterizing B. glumae using tox genes and its relationship with disease production. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03660-6.

2.
3 Biotech ; 12(6): 130, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35607392

RESUMEN

Xanthomonas oryzae pv. oryzae (Xoo) is a destructive pathogen that causes bacterial blight disease of rice worldwide. Xoo uses T3SS (type III secretion system) effectors to subvert rice innate immunity. However, the comprehensive knowledge of rice genes involved in T3SS effectors-mediated interaction remains unclear. In this study, the transcriptome profiles of rice infected with a virulent Xoo strain from North-eastern region of India relatives to its avirulent strain (that lacks functional T3SS) were analyzed at early (2-6 hpi) and late (16-24 hpi) hours of infection. Out of total 255 differentially expressed genes (DEGs), during early infection, 62 and 70 genes were upregulated and downregulated, respectively. At late infection, 70 and 53 genes were upregulated and downregulated, respectively. The transcriptomic data identified many differentially expressed resistant genes, transposons, transcription factors, serine/threonine protein kinase, cytochrome P450 and peroxidase genes that are involved in plant defense. Pathway analysis revealed that these DEGs are involved in hormone signaling, plant defense, cellular metabolism, growth and development processes. DEGs associated with plant defense were also validated through quantitative real-time PCR. Our study brings a comprehensive picture of the rice genes that are being differentially expressed during bacterial blight infection. Nevertheless, the DEG-associated pathways would provide sensible targets for developing resistance to bacterial blight. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03193-4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...