Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38890839

RESUMEN

The global population surge presents a dual challenge and opportunity in the realms of food consumption, safety, and mental well-being. This necessitates a projected 70% increase in food production to meet growing demands. Amid this backdrop, the ongoing COVID-19 pandemic exacerbates these issues, underscoring the need for a deeper understanding of the intricate interplay between food consumption patterns and mental health dynamics during this crisis. Mitigating the spread of COVID-19 hinges upon rigorous adherence to personal hygiene practices and heightened disease awareness. Furthermore, maintaining stringent food quality and safety standards across both public and private sectors is imperative for safeguarding public health and containing viral transmission. Drawing upon existing research, this study delves into the pandemic's impact on mental health, food consumption habits, and food safety protocols. Through a comprehensive analysis, it aims to elucidate the nuanced relationship among food, food safety, and mental well-being amid the COVID-19 pandemic, highlighting synergistic effects and dynamics that underpin holistic human welfare. Our study offers a novel approach by integrating psychological wellness with food security and safety. In conceiving this review, we aimed to comprehensively explore the intricate interplay among food security, safety, and psychological wellness amid the backdrop of the COVID-19 pandemic. Our review is structured to encompass a thorough examination of existing research, synthesizing insights into the multifaceted relationships among food consumption patterns, mental health dynamics, and food safety protocols during the crisis. Our findings provide valuable insights and practical recommendations for enhancing food security and psychological well-being, thus supporting both academic research and real-world applications in crisis management and policy development.

2.
Int J Biol Macromol ; 271(Pt 1): 132537, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821806

RESUMEN

Cyanidin-3-O-glucoside (C3G) is a type of water-soluble flavonoid compound that is abundantly found in fruits and vegetables. C3G possesses numerous biological activities, however, it is prone to breakdown under environmental conditions. To overcome these issues, we developed nano-nutriosome (NS) carriers created by vortex-mixing and probe-sonication techniques for C3G encapsulation in which the phospholipid and Nutriose® FB06 were chosen as carrier material, and guar gum (GG) as a coating material to formulate a unilamellar and multicompartment structure. This study aimed to develop and evaluate C3G-loaded nano-nutriosomes coated by GG (GG-C3G-NS) for improving physicochemical stability, antioxidant activity, cellular uptake, and controlled release properties. The C3G-NS and GG-C3G-NS are nanosized (143.47 to 154.13 nm), with high encapsulation efficiency (>93.31 %). The NS carriers successfully encapsulated C3G which was confirmed by transmission electron microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy. C3G showed more stability in storage, thermal, pH, ionic, and oxidative conditions. Furthermore, the NS exhibited a better-controlled release of C3G in different food stimulant conditions and in vitro release study. Additionally, NS systems enhanced cellular uptake and showed no cytotoxicity. Overall, GG-NS could be a promising nanocarrier for improving the stability, controlled release, and antioxidant activity of bioactive compounds.


Asunto(s)
Antocianinas , Antioxidantes , Galactanos , Mananos , Gomas de Plantas , Gomas de Plantas/química , Galactanos/química , Antocianinas/química , Antocianinas/farmacología , Mananos/química , Antioxidantes/química , Antioxidantes/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno
3.
J Agric Food Chem ; 72(17): 9703-9716, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567751

RESUMEN

Cyanidin-3-O-glucoside (C3G) is classified as an anthocyanin (ACN) and is recognized for its remarkable antioxidant properties. Yet, the inadequate physicochemical stability of C3G restricts its potential for various biological applications. Thus, in this study, carboxymethyl chitosan (CMC)-coated nanonutriosomes (NS) were synthesized as a novel carrier for encapsulating C3G (CMC-C3G-NS) to improve C3G stability. CMC-C3G-NS exhibited a diameter of less than 200 nm along with an encouraging encapsulation efficiency exceeding 90%. Notably, the formulated CMC-C3G-NS possessed better stability under various pH, ionic, and oxygen conditions, improved controlled release properties, and higher hepatocellular uptake than uncoated particles (C3G-NS), indicating a longer retention time of C3G in a physiological environment. Of utmost significance, CMC-C3G-NS demonstrated superior alleviating effects against palmitic acid (PA)-induced oxidative hepatic damage compared to C3G-NS. Our study provided promising nanocarriers with the potential to deliver hydrophilic ACNs and controlled release properties for PA-induced hepatotoxicity alleviation.


Asunto(s)
Antocianinas , Quitosano , Quitosano/análogos & derivados , Hepatocitos , Nanopartículas , Ácido Palmítico , Quitosano/química , Antocianinas/química , Antocianinas/administración & dosificación , Antocianinas/farmacología , Ácido Palmítico/química , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Nanopartículas/química , Portadores de Fármacos/química , Estrés Oxidativo/efectos de los fármacos , Animales , Células Hep G2
4.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966163

RESUMEN

Even though plant proteins are more plentiful and affordable than animal proteins in comparison, direct usage of plant-based proteins (PBPs) is still limited because PBPs are fed to animals as feed to produce animal-based proteins. Thus, this work has comprehensively reviewed the effects of various factors such as pH, temperature, pressure, and ionic strength on PBP properties, as well as describes the protein interactions, and extraction methods to know the optimal conditions for preparing PBP-based products with high functional properties and health benefits. According to the cited studies in the current work, the environmental factors, particularly pH and ionic strength significantly affected on physicochemical and functional properties of PBPs, especially solubility was 76.0% to 83.9% at pH = 2, while at pH = 5.0 reduced from 5.3% to 9.6%, emulsifying ability was the lowest at pH = 5.8 and the highest at pH 8.0, and foaming capacity was lowest at pH 5.0 and the highest at pH = 7.0. Electrostatic interactions are the main way for protein interactions, which can be used to create protein/polysaccharide complexes for food industrial purposes. The extraction yield of proteins can be reached up to 86-95% with high functional properties using sustainable and efficient routes, including enzymatic, ultrasound-, microwave-, pulsed electric field-, and high-pressure-assisted extraction. Nondairy alternative products, especially yogurt, 3D food printing and meat analogs, synthesis of nanoparticles, and bioplastics and packaging films are the best available PBPs-based products. Moreover, PBPs particularly those that contain pigments and their products showed good bioactivities, especially antioxidants, antidiabetic, and antimicrobial.

6.
Int J Biol Macromol ; 247: 125839, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37454997

RESUMEN

Anthocyanins are potential bioactive compounds with less bioavailability due to instability in physicochemical and physiological harsh environments. This study synthesized a "nanolipo-fibersomes (NLFS)" using Lipoid® S75 and Nutriose® FB 06 (dextrinization of wheat starch) through a self-assembly technique with probe sonication. We aimed to encapsulate delphinidin-3-O-sambubioside (D3S) successfully and evaluate physicochemical and controlled release properties with improved antioxidant activity on palmitic acid (PA)-induced colonic cells (Caco-2 cells). D3S-loaded nanolipo-fibersomes (D3S-NLFS) were nanosized (<150 nm), spherical shaped, and homogenously dispersed in solution with promising encapsulation efficiency (~ 89.31 to 97.31 %). Particles formation was further verified by FTIR. NLFS were well-stable in thermal, storage, and gastrointestinal mimic environments. NLFS exhibited better-controlled release and mucoadhesive properties compared to nanoliposomes (NL). The NLFS showed better cellular uptake than NL, which was correlated to higher mucoadhesive properties. Furthermore, D3S-NLFS exhibited promising protective effects against PA-induced cytotoxicity, O2•- radicals generation, mitochondrial dysfunctions, and GSH depletion, while the free D3S was ineffective. Among D3S-loaded nanoparticles, D3S-NLFS 3 was the most efficient nanocarrier followed by D3S-NLFS 2, D3S-NLFS 1, and D3S-NL, respectively. The above data suggest that nanolipo-fibersomes can be considered as promising nanovesicles for improving colonic delivery of hydrophilic compounds with controlled release properties and greater antioxidant activity.


Asunto(s)
Antocianinas , Antioxidantes , Humanos , Antocianinas/farmacología , Antocianinas/química , Antioxidantes/farmacología , Preparaciones de Acción Retardada/farmacología , Células CACO-2
7.
Crit Rev Food Sci Nutr ; 63(19): 3362-3385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34661483

RESUMEN

Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.


Asunto(s)
Antocianinas , Nanopartículas , Antocianinas/química , Disponibilidad Biológica , Nanopartículas/química , Antioxidantes/química , Liposomas/química
8.
Crit Rev Food Sci Nutr ; 63(29): 9731-9751, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35522080

RESUMEN

Curcumin (CUR) is a natural hydrophobic compound, which is available in turmeric rhizome. It has several bioactivities including antioxidant, anti-obesity, anti-diabetic, cardioprotective, anti-inflammatory, antimicrobial, anticancer, and other activities. Despite its medical and biological benefits, it is using in limitations because of its hydrophobicity and sensitivity. These unfavorable conditions further reduced the bioavailability (BA) and biological efficacy of CUR. This review summarizes the stability and BA of free- and encapsulated-CUR, as well as comprehensively discusses the potential biological activity of CUR-loaded various micro-/nano-encapsulation systems. The stability and BA of CUR can be improved via loading in different encapsulation systems, including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nano-hydrogel, and others. Biopolymer-based nanoparticles (especially poly lactic-co-glycolic acid (PLGA), zein, and chitosan) and nano-gels are the best carriers for encapsulating and delivering CUR. Both delivery systems are suitable because of their excellent functional properties such as high encapsulation efficiency, well-stability against unfavorable conditions, and can be coated using other encapsulation systems. Based on available evidences, encapsulated-CUR exerted greater biological activities especially anticancer (breast cancer), antioxidant, antidiabetic, and neuroprotective effects.


Asunto(s)
Curcumina , Nanopartículas , Humanos , Curcumina/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Portadores de Fármacos/química , Antioxidantes/farmacología , Nanopartículas/química , Liposomas , Biopolímeros , Tamaño de la Partícula
9.
Environ Chem Lett ; 21(1): 447-477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36161092

RESUMEN

Metal-organic frameworks are porous polymeric materials formed by linking metal ions with organic bridging ligands. Metal-organic frameworks are used as sensors, catalysts for organic transformations, biomass conversion, photovoltaics, electrochemical applications, gas storage and separation, and photocatalysis. Nonetheless, many actual metal-organic frameworks present limitations such as toxicity of preparation reagents and components, which make frameworks unusable for food and pharmaceutical applications. Here, we review the structure, synthesis and properties of cyclodextrin-based metal-organic frameworks that could be used in bioapplications. Synthetic methods include vapor diffusion, microwave-assisted, hydro/solvothermal, and ultrasound techniques. The vapor diffusion method can produce cyclodextrin-based metal-organic framework crystals with particle sizes ranging from 200 nm to 400 µm. Applications comprise food packaging, drug delivery, sensors, adsorbents, gas separation, and membranes. Cyclodextrin-based metal-organic frameworks showed loading efficacy of the bioactive compounds ranging from 3.29 to 97.80%.

10.
Food Chem ; 399: 133999, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037688

RESUMEN

Melastoma dodecandrum Lour. (MDL) extracts have shown potent α-glucosidase inhibitory activity, suggesting MDL might be a good source of α-glucosidase inhibitors. The aim of the study was to identify compounds in MDL extracts with α-glucosidase inhibitory activities and evaluate their effect on postprandial blood glucose as well as elucidating the underlying mechanisms of inhibition. A total of 34 polyphenols were identified in MDL fruits, among which 10 anthocyanins and three proanthocyanidin derivatives were discovered for the first time. Dosing mice with MDL extracts (100 mg/kg body weight, by gavage) was associated with a significantly decrease in postprandial blood glucose concentrations after oral administration of maltose. The most potent α-glucosidase inhibitor was identified as casuarictin (IC50 of 0.21 µg/mL). Casuarictin bound competitively to α-glucosidase, occupying not only the catalytic site but also forming strong hydrogen bonds with α-glucosidase residues. Therefore, casuarictin derived from MDL fruits might be used as novel α-glucosidase inhibitor in functional foods or other dietary products.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Melastomataceae , Animales , Antocianinas , Glucemia/metabolismo , Frutas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Melastomataceae/metabolismo , Ratones , Extractos Vegetales/química , alfa-Glucosidasas/metabolismo
11.
Food Funct ; 13(3): 1579-1592, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35073395

RESUMEN

This study for the first time used Melastoma dodecandrum Lour fruit powder (MDLP) as a novel functional ingredient for improving the quality of stirred-type yogurt (STY). Physicochemical properties, polyphenol content, antioxidant activity, textural analysis, fat globules, microstructure, and sensorial properties of MDLP-fortified STY were evaluated during storage (at 4 °C). The results indicated that MDLP significantly (p < 0.05) improved the total phenolics, flavonoids, anthocyanins, and proanthocyanidins, as well as increased the antioxidant activity of fortified yogurts compared to an STY-control. Interstitially, MDLP altered the structure of STY, making it firmer and more cohesive, increased its viscosity index, and significantly reduced whey and fat globule release compared to the STY-control during cold storage. Among all MDLP concentrations, 1% MDLP-fortified STY showed the best results followed by 0.5%. This study concluded that MDLP can be used as a potential nutritious ingredient and as a natural stabilizer for yogurt and related products.


Asunto(s)
Antioxidantes/análisis , Alimentos Fortificados/análisis , Frutas , Melastomataceae , Yogur/análisis , Animales , Compuestos de Bifenilo , Manipulación de Alimentos , Picratos , Reología
12.
Int J Biol Macromol ; 183: 908-917, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33965489

RESUMEN

The biological activity of neohesperidin (NH, a flavanone glycoside) is limited due to instability in the physiological environment. Thus, the current study aimed to explore the protective effect of NH-loaded pectin-chitosan decorated liposomes (P-CH-NH-NL) against palmitic acid (PA)-induced hepatic oxidative injury in L02 cells. The particles were characterized using DLS, TEM, HPLC, DSC, and cellular uptake study. Then, the protective effect of NH-loaded liposomal systems (NH-NLs) against PA-induced oxidative injury was evaluated in terms of cell viability study, intracellular ROS, superoxide ions (O2-), MMP, and cellular GSH determination. Our results exhibited that NH-NLs significantly lessened the PA-induced hepatic oxidative injury in L02 cells via decreasing ROS and O2- generation, reducing MMP collapse, and attenuating GSH reduction, whereas the free NH samples were ineffective. Furthermore, the coated NH-NLs were more effective than that of uncoated nanoliposome. Overall, our study confirmed that P-CH-NH-NL was capable of reducing PA-induced hepatic oxidative injury. Therefore, the pectin-chitosan decorated nanoliposome can be considered as an efficient delivery system for enhancing cellular uptake of lipophilic compound with controlled release and greater biological activity.


Asunto(s)
Quitosano/química , Hesperidina/análogos & derivados , Liposomas/química , Ácido Palmítico/toxicidad , Pectinas/química , Hesperidina/química , Hesperidina/farmacología , Humanos , Hígado/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
13.
Int J Biol Macromol ; 159: 341-355, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32417541

RESUMEN

Colon-targeted delivery is an active area of research as it can improve drug stability, bioactivity, and lessen the systematic toxicity. In this study, the colon-specific delivery of pelargonidin-3-O-glucoside (P3G) was investigated using pectin (P)/chitosan (CH)-functionalized nanoliposome (NL). The food simulant stability, transport mechanism, and bioactivity retention potential of carrier systems were studied. Results showed that polymer-coated nanoliposomes (P-CH-NL and CH-NL) improved the thermal and food simulant stability as well as enhanced the P3G retention during the in vitro digestion. The maximum P3G retention after enzymatic and non-enzymatic digestion was observed by P-CH-NL and the values were 47.5% and 57.5%, respectively. However, all nanoliposomal carriers followed Fickian diffusion mechanism both in in vitro food simulants and in vitro digestion models. Digested functionalized nanoliposomes revealed higher antioxidant properties after gastric digestion. Following by simulated intestinal fluid digestion, ABTS antioxidant activity of P-CH-P3G-NL was 12.52% and 6.31% higher than that of P3G-NL and CH-P3G-NL, respectively, while DPPH scavenging capacity of P-CH-P3G-NL was 5.57% and 1.86% greater than that of P3G-NL and CH-P3G-NL, respectively. Therefore, the developed functionalized nanoliposome can be useful for colon-targeted delivery and applicable in functional foods and/or beverages.


Asunto(s)
Antocianinas/administración & dosificación , Quitosano/química , Colon/efectos de los fármacos , Portadores de Fármacos/química , Liposomas/química , Nanocompuestos/química , Pectinas/química , Algoritmos , Antocianinas/farmacocinética , Antioxidantes/química , Antioxidantes/farmacología , Colon/metabolismo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Absorción Intestinal , Cinética , Modelos Teóricos , Tamaño de la Partícula , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...