Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(9): 095002, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991181

RESUMEN

A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

2.
Phys Rev Lett ; 112(18): 185004, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24856704

RESUMEN

An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ∼8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

3.
Phys Rev Lett ; 92(16): 165003, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-15169239

RESUMEN

Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of magnetized plasmas are presented. The computations, which have distinct plasma production and loss regions, reveal bursty ejection of particles and heat from the bulk plasma in the form of blobs. These structures propagate far into the scrape-off layer where they are dissipated due to transport along open magnetic field lines. From single-point recordings it is shown that the blobs have asymmetric conditional wave forms and lead to positively skewed and flattened probability distribution functions. The radial propagation velocity may reach one-tenth of the sound speed. These results are in excellent agreement with recent experimental measurements.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 056301, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14682878

RESUMEN

Incompressible, inviscid, irrotational, unsteady flows with circulation Gamma around a distorted toroidal bubble are considered. A general variational principle that determines the evolution of the bubble shape is formulated. For a two-dimensional (2D) cavity with a constant area A, exact pseudodifferential equations of motion are derived, based on variables that determine a conformal mapping of the unit circle exterior into the region occupied by the fluid. A closed expression for the Hamiltonian of the 2D system in terms of canonical variables is obtained. Stability of a stationary drifting 2D hollow vortex is demonstrated, when the gravity is small, gA(3/2)/Gamma(2)<<1. For a circulation-dominated regime of three-dimensional flows a simplified Lagrangian is suggested, inasmuch as the bubble shape is well described by the center line R(xi,t) and by an approximately circular cross section with relatively small area, A(xi,t)<<(contour integral operator |R'|dxi)(2). In particular, a finite-dimensional dynamical system is derived and approximately solved for a vertically moving axisymmetric vortex ring bubble with a compressed gas inside.

5.
Phys Rev Lett ; 91(10): 104502, 2003 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-14525483

RESUMEN

We present experiments and theory for the "bathtub vortex," which forms when a fluid drains out of a rotating cylindrical container through a small drain hole. The fast down-flow is found to be confined to a narrow and rapidly rotating "drainpipe" from the free surface down to the drain hole. Surrounding this drainpipe is a region with slow upward flow generated by the Ekman layer at the bottom of the container. This flow structure leads us to a theoretical model similar to one obtained earlier by Lundgren [J. Fluid Mech. 155, 381 (1985)]], but here including surface tension and Ekman upwelling, comparing favorably with our measurements. At the tip of the needlelike surface depression, we observe a bubble-forming instability at high rotation rates.

6.
Phys Rev Lett ; 89(15): 153902, 2002 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-12365988

RESUMEN

The theory of focusing light pulses in Kerr media with normal group-velocity dispersion in (2+1) and (3+1) dimensions is revisited. It is shown that pulse splitting introduced by this dispersion follows from shock fronts that develop along hyperbolas separating the region of transverse self-focusing from the domain of temporal dispersion. Justified by a self-similar approach, this property is confirmed by numerical simulations using an adaptive-mesh refinement code.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...