Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38659795

RESUMEN

Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, cellular factors involved in dynactin assembly remain unexplored. Here we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components including an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with dynactin either directly or indirectly via the Arp1 mini-filament and its pointed-end sub-complex. Loss of VezA causes a defect in dynactin integrity, most likely by affecting the connection between the Arp1 mini-filament and its pointed-end sub-complex. Using various dynactin mutants, we further revealed that assembly of the dynactin complex must be highly coordinated. Together, these results shed important new light on dynactin assembly in vivo.

2.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35792828

RESUMEN

Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad de Leigh , Células-Madre Neurales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Mutación/genética , Células-Madre Neurales/metabolismo , Organoides/metabolismo
3.
PLoS One ; 16(3): e0248000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33705438

RESUMEN

CUL9 is a non-canonical and poorly characterized member of the largest family of E3 ubiquitin ligases known as the Cullin RING ligases (CRLs). Most CRLs play a critical role in developmental processes, however, the role of CUL9 in neuronal development remains elusive. We determined that deletion or depletion of CUL9 protein causes aberrant formation of neural rosettes, an in vitro model of early neuralization. In this study, we applied mass spectrometric approaches in human pluripotent stem cells (hPSCs) and neural progenitor cells (hNPCs) to identify CUL9 related signaling pathways that may contribute to this phenotype. Through LC-MS/MS analysis of immunoprecipitated endogenous CUL9, we identified several subunits of the APC/C, a major cell cycle regulator, as potential CUL9 interacting proteins. Knockdown of the APC/C adapter protein FZR1 resulted in a significant increase in CUL9 protein levels, however, CUL9 does not appear to affect protein abundance of APC/C subunits and adapters or alter cell cycle progression. Quantitative proteomic analysis of CUL9 KO hPSCs and hNPCs identified protein networks related to metabolic, ubiquitin degradation, and transcriptional regulation pathways that are disrupted by CUL9 deletion in both hPSCs. No significant changes in oxygen consumption rates or ATP production were detected in either cell type. The results of our study build on current evidence that CUL9 may have unique functions in different cell types and that compensatory mechanisms may contribute to the difficulty of identifying CUL9 substrates.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Transducción de Señal , Transferasas/metabolismo , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Citocromos c/metabolismo , Edición Génica , Humanos , Proteómica/métodos
4.
Cell Death Dis ; 11(9): 808, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978370

RESUMEN

Intrinsic apoptosis relies on the ability of the BCL-2 family to induce the formation of pores on the outer mitochondrial membrane. Previous studies have shown that both BAX and BAK are essential during murine embryogenesis, and reports in human cancer cell lines identified non-canonical roles for BAX and BAK in mitochondrial fission during apoptosis. BAX and BAK function in human brain development remains elusive due to the lack of appropriate model systems. Here, we generated BAX/BAK double knockout human-induced pluripotent stem cells (hiPSCs), hiPSC-derived neural progenitor cells (hNPCs), neural rosettes, and cerebral organoids to uncover the effects of BAX and BAK deletion in an in vitro model of early human brain development. We found that BAX and BAK-deficient cells have abnormal mitochondrial morphology and give rise to aberrant cortical structures. We suggest crucial functions for BAX and BAK during human development, including maintenance of homeostatic mitochondrial morphology, which is crucial for proper development of progenitors and neurons of the cortex. Human pluripotent stem cell-derived systems can be useful platforms to reveal novel functions of the apoptotic machinery in neural development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Células Madre Pluripotentes Inducidas/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Animales , Apoptosis , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
5.
Cytoskeleton (Hoboken) ; 77(9): 342-350, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32885903

RESUMEN

The coordinated generation of mechanical forces by cardiac myocytes is required for proper heart function. Myofibrils are the functional contractile units of force production within individual cardiac myocytes. At the molecular level, myosin motors form cross-bridges with actin filaments and use ATP to convert chemical energy into mechanical forces. The energetic efficiency of the cross-bridge cycle is influenced by the viscous damping of myofibril contraction. The viscoelastic response of myofibrils is an emergent property of their individual mechanical components. Previous studies have implicated titin-actin interactions, cell-ECM adhesion, and microtubules as regulators of the viscoelastic response of myofibrils. Here we probed the viscoelastic response of myofibrils using laser-assisted dissection. As a proof-of-concept, we found actomyosin contractility was required to endow myofibrils with their viscoelastic response, with blebbistatin treatment resulting in decreased myofibril tension and viscous damping. Focal adhesion kinase (FAK) is a key regulator of cell-ECM adhesion, microtubule stability, and myofibril assembly. We found inhibition of FAK signaling altered the viscoelastic properties of myofibrils. Specifically, inhibition of FAK resulted in increased viscous damping of myofibril retraction following laser ablation. This damping was not associated with acute changes in the electrophysiological properties of cardiac myocytes. These results implicate FAK as a regulator of mechanical properties of myofibrils.


Asunto(s)
Adhesiones Focales/metabolismo , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Humanos , Viscosidad
6.
Cell Metab ; 31(6): 1047-1049, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32492390

RESUMEN

Mitochondrial fission is sustained through contact with several organelles, including the endoplasmic reticulum, lysosomes, and the actin cytoskeleton. Nagashima et al. (2020) now demonstrate that PI(4)P-containing Golgi-derived vesicles also modulate mitochondrial fission, driven by Arf1 and PI(4)KIIIß activity, identifying a new organelle contact involved in maintaining mitochondrial homeostasis.


Asunto(s)
Aparato de Golgi , Dinámicas Mitocondriales , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Mitocondrias
7.
Int Rev Cell Mol Biol ; 353: 255-284, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32381177

RESUMEN

The B cell CLL/lymphoma-2 (BCL-2) family of proteins control the mitochondrial pathway of apoptosis, also known as intrinsic apoptosis. Direct binding between members of the BCL-2 family regulates mitochondrial outer membrane permeabilization (MOMP) after an apoptotic insult. The ability of the cell to sense stress and translate it into a death signal has been a major theme of research for nearly three decades; however, other mechanisms by which the BCL-2 family coordinates cellular homeostasis beyond its role in initiating apoptosis are emerging. One developing area of research is understanding how the BCL-2 family of proteins regulate development using pluripotent stem cells as a model system. Understanding BCL-2 family-mediated regulation of mitochondrial homeostasis in cell death and beyond would uncover new facets of stem cell maintenance and differentiation potential.


Asunto(s)
Diferenciación Celular , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Muerte Celular , Humanos , Dinámicas Mitocondriales
8.
iScience ; 23(4): 101015, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32283523

RESUMEN

MCL-1 is a well-characterized inhibitor of cell death that has also been shown to be a regulator of mitochondrial dynamics in human pluripotent stem cells. We used cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) to uncover whether MCL-1 is crucial for cardiac function and survival. Inhibition of MCL-1 by BH3 mimetics resulted in the disruption of mitochondrial morphology and dynamics as well as disorganization of the actin cytoskeleton. Interfering with MCL-1 function affects the homeostatic proximity of DRP-1 and MCL-1 at the outer mitochondrial membrane, resulting in decreased functionality of hiPSC-CMs. Cardiomyocytes display abnormal cardiac performance even after caspase inhibition, supporting a nonapoptotic activity of MCL-1 in hiPSC-CMs. BH3 mimetics targeting MCL-1 are promising anti-tumor therapeutics. Progression toward using BCL-2 family inhibitors, especially targeting MCL-1, depends on understanding its canonical function not only in preventing apoptosis but also in the maintenance of mitochondrial dynamics and function.

9.
Am J Physiol Renal Physiol ; 318(2): F285-F297, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760770

RESUMEN

Juxtaglomerular (JG) cells, major sources of renin, differentiate from metanephric mesenchymal cells that give rise to JG cells or a subset of smooth muscle cells of the renal afferent arteriole. During periods of dehydration and salt deprivation, renal mesenchymal stromal cells (MSCs) differentiate from JG cells. JG cells undergo expansion and smooth muscle cells redifferentiate to express renin along the afferent arteriole. Gene expression profiling comparing resident renal MSCs with JG cells indicates that the transcription factor Sox6 is highly expressed in JG cells in the adult kidney. In vitro, loss of Sox6 expression reduces differentiation of renal MSCs to renin-producing cells. In vivo, Sox6 expression is upregulated after a low-Na+ diet and furosemide. Importantly, knockout of Sox6 in Ren1d+ cells halts the increase in renin-expressing cells normally seen during a low-Na+ diet and furosemide as well as the typical increase in renin. Furthermore, Sox6 ablation in renin-expressing cells halts the recruitment of smooth muscle cells along the afferent arteriole, which normally express renin under these conditions. These results support a previously undefined role for Sox6 in renin expression.


Asunto(s)
Arteriolas/metabolismo , Aparato Yuxtaglomerular/irrigación sanguínea , Células Madre Mesenquimatosas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Renina/metabolismo , Factores de Transcripción SOXD/metabolismo , Animales , Arteriolas/efectos de los fármacos , Presión Sanguínea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dieta Hiposódica , Diuréticos/farmacología , Furosemida/farmacología , Regulación de la Expresión Génica , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Renina/genética , Factores de Transcripción SOXD/deficiencia , Factores de Transcripción SOXD/genética , Transducción de Señal
10.
Cancer Immunol Res ; 7(1): 86-99, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30413431

RESUMEN

Advances in single-cell biology have enabled measurements of >40 protein features on millions of immune cells within clinical samples. However, the data analysis steps following cell population identification are susceptible to bias, time-consuming, and challenging to compare across studies. Here, an ensemble of unsupervised tools was developed to evaluate four essential types of immune cell information, incorporate changes over time, and address diverse immune monitoring challenges. The four complementary properties characterized were (i) systemic plasticity, (ii) change in population abundance, (iii) change in signature population features, and (iv) novelty of cellular phenotype. Three systems immune monitoring studies were selected to challenge this ensemble approach. In serial biopsies of melanoma tumors undergoing targeted therapy, the ensemble approach revealed enrichment of double-negative (DN) T cells. Melanoma tumor-resident DN T cells were abnormal and phenotypically distinct from those found in nonmalignant lymphoid tissues, but similar to those found in glioblastoma and renal cell carcinoma. Overall, ensemble systems immune monitoring provided a robust, quantitative view of changes in both the system and cell subsets, allowed for transparent review by human experts, and revealed abnormal immune cells present across multiple human tumor types.


Asunto(s)
Monitorización Inmunológica , Neoplasias/inmunología , Linfocitos T/inmunología , Tonsila Faríngea/inmunología , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Femenino , Humanos , Imidazoles/uso terapéutico , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Masculino , Persona de Mediana Edad , Neoplasias/tratamiento farmacológico , Oximas/uso terapéutico , Tonsila Palatina/inmunología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico
11.
Stem Cell Reports ; 10(3): 684-692, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29429957

RESUMEN

Human pluripotent stem cells (hPSCs) maintain a highly fragmented mitochondrial network, but the mechanisms regulating this phenotype remain unknown. Here, we describe a non-cell death function of the anti-apoptotic protein, MCL-1, in regulating mitochondrial dynamics and promoting pluripotency of stem cells. MCL-1 is induced upon reprogramming, and its inhibition or knockdown induces dramatic changes to the mitochondrial network as well as loss of the key pluripotency transcription factors, NANOG and OCT4. Aside from localizing at the outer mitochondrial membrane like other BCL-2 family members, MCL-1 is unique in that it also resides at the mitochondrial matrix in pluripotent stem cells. Mechanistically, we find MCL-1 to interact with DRP-1 and OPA1, two GTPases responsible for remodeling the mitochondrial network. Depletion of MCL-1 compromised the levels and activity of these key regulators of mitochondrial dynamics. Our findings uncover an unexpected, non-apoptotic function for MCL-1 in the maintenance of mitochondrial structure and stemness.


Asunto(s)
Apoptosis/fisiología , Dinámicas Mitocondriales/fisiología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/fisiología , Diferenciación Celular/fisiología , Línea Celular , Reprogramación Celular/fisiología , Humanos , Mitocondrias/metabolismo , Mitocondrias/fisiología , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
12.
Genes (Basel) ; 9(2)2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29463061

RESUMEN

The core transcriptional network regulating stem cell self-renewal and pluripotency remains an intense area of research. Increasing evidence indicates that modified regulation of basic cellular processes such as mitochondrial dynamics, apoptosis, and cell cycle are also essential for pluripotent stem cell identity and fate decisions. Here, we review evidence for Wnt regulation of pluripotency and self-renewal, and its connections to emerging features of pluripotent stem cells, including (1) increased mitochondrial fragmentation, (2) increased sensitivity to cell death, and (3) shortened cell cycle. We provide a general overview of the stem cell-specific mechanisms involved in the maintenance of these uncharacterized hallmarks of pluripotency and highlight potential links to the Wnt signaling pathway. Given the physiological importance of stem cells and their enormous potential for regenerative medicine, understanding fundamental mechanisms mediating the crosstalk between Wnt, organelle-dynamics, apoptosis, and cell cycle will be crucial to gain insight into the regulation of stemness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...