Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(38): 34928-34937, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37779967

RESUMEN

Because of their ability to promote growth, act as biopesticides, and improve abiotic stress tolerance, Trichoderma spp. have been used for plant seed coating. However, the mechanism for the promotion of plant growth remains unknown. In this study, we investigate the effect of fungal extracts on the plant plasma membrane (PM) H+-ATPase, which is essential for plant growth and often a target of plant-associated microbes. We show that Trichoderma harzianum extract increases H+-ATPase activity, and by fractionation and high-resolution mass spectrometry (MS), we identify the activating components trichorzin PA (tPA) II and tPA VI that belong to the class of peptaibols. Peptaibols are nonribosomal peptides that can integrate into membranes and form indiscriminate ion channels, which causes pesticidal activity. To further investigate peptaibol-mediated H+-ATPase activation, we compare the effect of tPA II and VI to that of the model peptaibol alamethicin (AlaM). We show that AlaM increases H+-ATPase turnover rates in a concentration-dependent manner, with a peak in activity measured at 31.25 µM, above which activity decreases. Using fluorescent probes and light scattering, we find that the AlaM-mediated increase in activity is not correlated to increased membrane fluidity or vesicle integrity, whereas the activity decrease at high AlaM concentrations is likely due to PM overloading of AlaM pores. Overall, our results suggest that the symbiosis of fungi and plants, specifically related to peptaibols, is a concentration-dependent balance, where peptaibols do not act only as biocontrol agents but also as plant growth stimulants.

2.
Harmful Algae ; 99: 101905, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33218431

RESUMEN

The dinoflagellate Karlodinium armiger has a huge impact on wild and caged fish during blooms in coastal waters. Recently, a new toxin, karmitoxin, was chemically characterized from K. armiger and a quantification method was established, thereby allowing investigations of the fish killing mechanism. K. armiger is not able to grow in standard growth media that are based on nitrate as a nitrogen source, and successful cultures of this species have only been achieved in mixotrophic cultures after addition of a prey source. Here we show that addition of ammonium (up to 50 µM) to the growth media is a good alternative, as K. armiger batch cultures achieve growth rates, which are comparable to growth rates reached in mixotrophic cultures. Karmitoxin production (1.9 and 2.9 pg cell-1 d-1) and cellular karmitoxin content (8.72 ± 0.25 pg cell-1 and 7.14 ± 0.29 pg cell-1) were in the same range, though significantly different, in prey-fed cultures and monocultures supplied with ammonium, respectively. Net production of karmitoxin stopped when the K. armiger cultures reached stationary growth phase, indicating no accumulation of karmitoxin in cells or growth media. Toxicity tests towards sheepshead minnow fish larvae indicated rapid death of the fish larvae when exposed to high K. armiger cell concentrations (LT50 of 2.06 h at 44.9 × 103 cells mL-1 cultivated with ammonium). Purified toxins caused the same physical damage to fish larvae as living K. armiger cultures. An exposure of purified karmitoxin to fish larvae and rainbow trout gill cells indicated that the fish larvae were about three times less sensitive than gill cells. When comparing the effect of purified toxins with the effect of whole K. armiger cultures, twice the toxin concentration of the purified toxins was needed to cause the same effect. Although a loss of karmitoxin of twenty percent was observed during the incubation, this could not explain the apparent discrepancy. Other factors, like a direct effect of the K. armiger cells on the fish larvae or other, yet unknown toxins may influence the effect of whole cell cultures. To study the effects of released karmitoxin, fish larvae were exposed to a K. armiger culture that was treated with HP-20 resin, which adsorbs extracellular karmitoxin. The 24 h HP-20 treatment resulted in a K. armiger culture that had 37% less total karmitoxin, without a reduction in cell concentration, and a reduced toxic effect was observed in the HP-20 treated culture, as compared to non-treated controls. Fish larvae that were exposed to HP-20 treated culture were immobilized, but survived during the 12 h exposure, whereas the exposure to non-treated culture led to high mortality of the fish larvae. Direct observations under the microscope revealed no evidence of micropredation of K. armiger on the fish larvae during any of the exposures. Thus, the results presented here, indicate that released karmitoxin is the main cause for fish kills by K. armiger. Finally, we found that juvenile rainbow trout were six times more sensitive than fish larvae towards K. armiger, indicating that juvenile fish are more sensitive to K. armiger in bloom situations than early larval stages.


Asunto(s)
Dinoflagelados , Animales , Larva , Polienos , Pruebas de Toxicidad
3.
Sci Rep ; 9(1): 8819, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217550

RESUMEN

Fungus-growing termites engage in an obligate mutualistic relationship with Termitomyces fungi, which they maintain in monocultures on specialised fungus comb structures, without apparent problems with infectious diseases. While other fungi have been reported in the symbiosis, detailed comb fungal community analyses have been lacking. Here we use culture-dependent and -independent methods to characterise fungus comb mycobiotas from three fungus-growing termite species (two genera). Internal Transcribed Spacer (ITS) gene analyses using 454 pyrosequencing and Illumina MiSeq showed that non-Termitomyces fungi were essentially absent in fungus combs, and that Termitomyces fungal crops are maintained in monocultures as heterokaryons with two or three abundant ITS variants in a single fungal strain. To explore whether the essential absence of other fungi within fungus combs is potentially due to the production of antifungal metabolites by Termitomyces or comb bacteria, we performed in vitro assays and found that both Termitomyces and chemical extracts of fungus comb material can inhibit potential fungal antagonists. Chemical analyses of fungus comb material point to a highly complex metabolome, including compounds with the potential to play roles in mediating these contaminant-free farming conditions in the termite symbiosis.


Asunto(s)
Isópteros/microbiología , Termitomyces/crecimiento & desarrollo , Animales , Antiinfecciosos/farmacología , Isópteros/crecimiento & desarrollo , Estadios del Ciclo de Vida , Pruebas de Sensibilidad Microbiana , Análisis de Componente Principal
4.
Phytochemistry ; 157: 168-174, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30412824

RESUMEN

The genus Thapsia produces a wide variety of sesquiterpenoids. The Mediterranean plant Thapsia laciniata Rouy is known to have a product profile that differs from several other species in the genus. Thus, the biosynthesis of sesquiterpenoids in Thapsia laciniata Rouy was investigated. Here we describe three terpene synthases, TlTPS820, TlTPS509 and TlTPS18983. TlTPS18983 is a multi-product enzyme with farnesene as the major product, while TlTPS509 produces guaiol and bulnesol along with other major and several minor unknown products. TlTPS820 is orthologous to TgTPS2 from Thapsia garganica L. and is an epikunzeaol synthase. TgCYP76AE2 from Thapsia garganica performs a triple hydroxylation of epikunzeaol at C-12 to make dihydrocostunolide. It was therefore investigated if the cytochrome P450, TlCYP76AE4 was able to use epikunzeaol as a substrate. It was found that TlCYP76AE4 hydroxylates epikunzeaol at C-8 to yield tovarol instead of dihydrocostunolide.


Asunto(s)
Sesquiterpenos/metabolismo , Thapsia/metabolismo , Biocatálisis , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Sesquiterpenos/química , Thapsia/enzimología
5.
Environ Microbiol Rep ; 10(3): 383-393, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29624899

RESUMEN

The Roseobacter-group species Phaeobacter inhibens produces the antibacterial tropodithietic acid (TDA) and the algaecidal roseobacticides with both compound classes sharing part of the same biosynthetic pathway. The purpose of this study was to investigate the production of roseobacticides more broadly in TDA-producing roseobacters and to compare the effect of producers and non-producers on microalgae. Of 33 roseobacters analyzed, roseobacticide production was a unique feature of TDA-producing P. inhibens, P. gallaeciensis and P. piscinae strains. One TDA-producing Phaeobacter, 27-4, did not produce roseobacticides, possibly due to a transposable element. TDA-producing Ruegeria and Pseudovibrio did not produce roseobacticides. Addition of roseobacticide-containing bacterial extracts affected the growth of the microalgae Rhodomonas salina, Thalassiosira pseudonana and Emiliania huxleyi, while growth of Tetraselmis suecica was unaffected. During co-cultivation, growth of E. huxleyi was initially stimulated by the roseobacticide producer DSM 17395, while the subsequent decline in algal cell numbers during senescence was enhanced. Strain 27-4 that does not produce roseobacticides had no effect on algal growth. Both bacterial strains, DSM 17395 and 27-4, grew during co-cultivation presumably utilizing algal exudates. Furthermore, TDA-producing roseobacters have potential as probiotics in marine larviculture and it is promising that the live feed Tetraselmis was unaffected by roseobacticides-containing extracts.


Asunto(s)
Microalgas/crecimiento & desarrollo , Microalgas/microbiología , Roseobacter/metabolismo , Tropolona/análogos & derivados , Vías Biosintéticas , Filogenia , Roseobacter/clasificación , Tropolona/metabolismo
6.
Mar Drugs ; 15(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858210

RESUMEN

Being able to quantify ichthyotoxic metabolites from microalgae allows for the determination of ecologically-relevant concentrations that can be simulated in laboratory experiments, as well as to investigate bioaccumulation and degradation. Here, the ichthyotoxin karmitoxin, produced by Karlodinium armiger, was quantified in laboratory-grown cultures using high-performance liquid chromatography (HPLC) coupled to electrospray ionisation high-resolution time-of-flight mass spectrometry (HRMS). Prior to the quantification of karmitoxin, a standard of karmitoxin was purified from K. armiger cultures (80 L). The standard was quantified by fluorescent derivatisation using Waters AccQ-Fluor reagent and derivatised fumonisin B1 and fumonisin B2 as standards, as each contain a primary amine. Various sample preparation methods for whole culture samples were assessed, including six different solid phase extraction substrates. During analysis of culture samples, MS source conditions were monitored with chloramphenicol and valinomycin as external standards over prolonged injection sequences (>12 h) and karmitoxin concentrations were determined using the response factor of a closely eluting iturin A2 internal standard. Using this method the limit of quantification was 0.11 µg·mL-1, and the limit of detection was found to be 0.03 µg·mL-1. Matrix effects were determined with the use of K. armiger cultures grown with 13C-labelled bicarbonate as the primary carbon source.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Dinoflagelados/química , Fumonisinas/análisis , Toxinas Marinas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Fumonisinas/aislamiento & purificación , Límite de Detección , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
7.
J Nat Prod ; 80(5): 1287-1293, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28379705

RESUMEN

Marine algae from the genus Karlodinium are known to be involved in fish-killing events worldwide. Here we report for the first time the chemistry and bioactivity of a natural product from the newly described mixotrophic dinoflagellate Karlodinium armiger. Our work describes the isolation and structural characterization of a new polyhydroxy-polyene named karmitoxin. The structure elucidation work was facilitated by use of 13C enrichment and high-field 2D NMR spectroscopy, where 1H-13C long-range correlations turned out to be very informative. Karmitoxin is structurally related to amphidinols and karlotoxins; however it differs by containing the longest carbon-carbon backbone discovered for this class of compounds, as well as a primary amino group. Karmitoxin showed potent nanomolar cytotoxic activity in an RTgill-W1 cell assay as well as rapid immobilization and eventual mortality of the copepod Acartia tonsa, a natural grazer of K. armiger.


Asunto(s)
Aminas/química , Dinoflagelados/química , Toxinas Marinas/química , Polienos/química , Polienos/farmacología , Animales , Espectroscopía de Resonancia Magnética , Estructura Molecular , Polienos/aislamiento & purificación
8.
Plant Physiol ; 174(1): 56-72, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28275147

RESUMEN

The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase calcium pump in mammals and is of industrial importance as the active moiety of the anticancer drug mipsagargin, currently in clinical trials. Knowledge of thapsigargin in planta storage and biosynthesis has been limited. Here, we present the putative second step in thapsigargin biosynthesis, by showing that the cytochrome P450 TgCYP76AE2, transiently expressed in Nicotiana benthamiana, converts epikunzeaol into epidihydrocostunolide. Furthermore, we show that thapsigargin is likely to be stored in secretory ducts in the roots. Transcripts from TgTPS2 (epikunzeaol synthase) and TgCYP76AE2 in roots were found only in the epithelial cells lining these secretory ducts. This emphasizes the involvement of these cells in the biosynthesis of thapsigargin. This study paves the way for further studies of thapsigargin biosynthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/metabolismo , Thapsia/metabolismo , Tapsigargina/metabolismo , Sistema Enzimático del Citocromo P-450/clasificación , Sistema Enzimático del Citocromo P-450/genética , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Modelos Químicos , Estructura Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Thapsia/citología , Thapsia/genética , Tapsigargina/síntesis química , Nicotiana/genética , Nicotiana/metabolismo
9.
J Nat Prod ; 79(9): 2250-6, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27550620

RESUMEN

Blooms of the microalga Prymnesium parvum cause devastating fish kills worldwide, which are suspected to be caused by the supersized ladder-frame polyether toxins prymnesin-1 and -2. These toxins have, however, only been detected from P. parvum in rare cases since they were originally described two decades ago. Here, we report the isolation and characterization of a novel B-type prymnesin, based on extensive analysis of 2D- and 3D-NMR data of natural as well as 90% (13)C enriched material. B-type prymnesins lack a complete 1,6-dioxadecalin core unit, which is replaced by a short acyclic C2 linkage compared to the structure of the original prymnesins. Comparison of the bioactivity of prymnesin-2 with prymnesin-B1 in an RTgill-W1 cell line assay identified both compounds as toxic in the low nanomolar range. Chemical investigations by liquid chromatography high-resolution mass spectrometry (LC-HRMS) of 10 strains of P. parvum collected worldwide showed that only one strain produced the original prymnesin-1 and -2, whereas four strains produced the novel B-type prymnesin. In total 13 further prymnesin analogues differing in their core backbone and chlorination and glycosylation patterns could be tentatively detected by LC-MS/HRMS, including a likely C-type prymnesin in five strains. Altogether, our work indicates that evolution of prymnesins has yielded a diverse family of fish-killing toxins that occurs around the globe and has significant ecological and economic impact.


Asunto(s)
Glicósidos/química , Glicósidos/aislamiento & purificación , Haptophyta/química , Lipoproteínas/química , Lipoproteínas/aislamiento & purificación , Polímeros/química , Polímeros/farmacología , Piranos/química , Piranos/aislamiento & purificación , Animales , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Lipoproteínas/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Policétidos
10.
J Nat Prod ; 79(3): 662-73, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26901085

RESUMEN

Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds that are toxic to fish, the so-called ichthyotoxins. Despite numerous reports of algal blooms causing massive fish kills worldwide, only a few types of compounds, such as the karlotoxins, have been proven to be true ichthyotoxins. This review will highlight marine microalgae as the source of some of the most complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized.


Asunto(s)
Dinoflagelados/química , Toxinas Marinas , Animales , Ciguatoxinas , Contaminación de Alimentos/análisis , Humanos , Toxinas Marinas/química , Toxinas Marinas/metabolismo , Estructura Molecular , Venenos de Moluscos , Oxocinas , Compuestos de Espiro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...