Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Skin Res Technol ; 30(3): e13642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454597

RESUMEN

AIMS AND OBJECTIVES: The purpose of this study is to investigate the effectiveness and safety of oral and injectable systemic treatments, such as methotrexate, azathioprine, cyclosporine, tofacitinib, baricitinib, corticosteroids, statins, zinc, apremilast, etc., for treating vitiligo lesions. METHOD: Databases including PubMed, Scopus, and Web of Science were meticulously searched for studies spanning from 2010 to August 2023, focusing on systemic oral and injectable therapies for vitiligo, using comprehensive keywords and search syntaxes tailored to each database. Key data extracted included study design, treatment efficacy, patient outcomes, patient satisfaction, and safety profiles. RESULTS: In a total of 42 included studies, oral mini-pulse corticosteroid therapy (OMP) was the subject of six studies (14.2%). Minocycline was the focus of five studies (11.9%), while methotrexate, apremilast, and tofacitinib each were examined in four studies (9.5%). Antioxidants and Afamelanotide were the subjects of three studies each (7.1%). Cyclosporine, simvastatin, oral zinc, oral corticosteroids (excluding OMP) and injections, and baricitinib were each explored in two studies (4.8%). Azathioprine, mycophenolate mofetil, and Alefacept were the subjects of one study each (2.4%). CONCLUSION: Systemic treatments for vitiligo have been successful in controlling lesions without notable side effects. OMP, Methotrexate, Azathioprine, Cyclosporine, Mycophenolate mofetil, Simvastatin, Apremilast, Minocycline, Afamelanotide, Tofacitinib, Baricitinib, Antioxidants, and oral/injectable corticosteroids are effective treatment methods. However, oral zinc and alefacept did not show effectiveness.


Asunto(s)
Azetidinas , Hipopigmentación , Purinas , Pirazoles , Sulfonamidas , Talidomida/análogos & derivados , Vitíligo , Humanos , Metotrexato/uso terapéutico , Azatioprina/uso terapéutico , Vitíligo/tratamiento farmacológico , Vitíligo/patología , Ácido Micofenólico/uso terapéutico , Minociclina/uso terapéutico , Alefacept/uso terapéutico , Ciclosporina/uso terapéutico , Corticoesteroides , Simvastatina/uso terapéutico , Zinc/uso terapéutico
2.
BMC Endocr Disord ; 24(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167035

RESUMEN

BACKGROUND AND AIMS: The current systematic review aimed to elucidate the effects of lipid variability on microvascular complication risk in diabetic patients. The lipid components studied were as follows: High-density lipoprotein (HDL), High-density lipoprotein (LDL), Triglyceride (TG), Total Cholesterol (TC), and Remnant Cholesterol (RC). METHOD: We carried out a systematic search in multiple databases, including PubMed, Web of Science, and SCOPUS, up to October 2nd, 2023. After omitting the duplicates, we screened the title and abstract of the studies. Next, we retrieved and reviewed the full text of the remaining articles and included the ones that met our inclusion criteria in the study. RESULT: In this research, we examined seven studies, comprising six cohort studies and one cross-sectional study. This research was conducted in Hong Kong, China, Japan, Taiwan, Finland, and Italy. The publication years of these articles ranged from 2012 to 2022, and the duration of each study ranged from 5 to 14.3 years. The study group consisted of patients with type 2 diabetes aged between 45 and 84 years, with a diabetes history of 7 to 12 years. These studies have demonstrated that higher levels of LDL, HDL, and TG variability can have adverse effects on microvascular complications, especially nephropathy and neuropathic complications. TG and LDL variability were associated with the development of albuminuria and GFR decline. Additionally, reducing HDL levels showed a protective effect against microalbuminuria. However, other studies did not reveal an apparent relationship between lipid variations and microvascular complications, such as retinopathy. Current research lacks geographic and demographic diversity. Increased HDL, TG, and RC variability have been associated with several microvascular difficulties. Still, the pathogenic mechanism is not entirely known, and understanding how lipid variability affects microvascular disorders may lead to novel treatments. Furthermore, the current body of this research is restricted in its coverage. This field's lack of thorough investigations required a more extensive study and comprehensive effort. CONCLUSION: The relationship between lipid variation (LDL, HDL, and TG) (adverse effects) on microvascular complications, especially nephropathy and neuropathic (and maybe not retinopathy), is proven. Physicians and health policymakers should be highly vigilant to lipid variation in a general population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Estudios Transversales , HDL-Colesterol , Triglicéridos , Colesterol , Lipoproteínas HDL
3.
Curr Mol Med ; 24(3): 298-315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36959143

RESUMEN

Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.


Asunto(s)
Flavonoides , Neoplasias , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Neoplasias/patología , Retículo Endoplásmico/metabolismo , Apoptosis
4.
Front Pharmacol ; 13: 1027633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703744

RESUMEN

Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA