Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(11): 2496-2508, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38385969

RESUMEN

We report a numerical investigation of the magnetophoresis of solutions containing paramagnetic metal ions. Using a simulated magnetic field of a superconducting magnet and the convection-diffusion model, we study the transport of transition metal salts through a porous medium domain. In particular, through a detailed comparison of the numerical results of magnetophoretic velocity and ion concentration profiles with prior published experiments, we validate the model. Subsequent to model validation, we perform a systematic analysis of the model parameters on the magnetophoresis of metal ions. Magnetophoresis is quantified with a magnetic Péclet number Pem. Under a non-uniform magnetic field, Pem initially rises, exhibiting a local maximum, and subsequently declines towards a quasi-steady value. Our results show that both the initial and maximum Pem values increase with increasing magnetic susceptibility, initial concentration of metal solutes, and ion cluster size. Conversely, Pem decreases as the porosity of the medium increases. Finally, the adsorption of metal salts onto the porous media surface is modeled through a dimensionless Damkohler number Daad. Our results suggest that the adsorption significantly slows the magnetophoresis and self-diffusion of the paramagnetic metal salts, with a net magnetophoresis velocity dependent on the kinetics and equilibrium adsorption properties of the metal salts. The latter result underscores the crucial role of adsorption in future magnetophoresis research.

2.
Soft Matter ; 18(32): 6079-6093, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35929819

RESUMEN

We investigate the flow evolution of a linear and a branched wormlike micellar solution with matched rheology in a Taylor-Couette (TC) cell using a combination of particle-tracking velocimetry, birefringence, and turbidity measurements. Both solutions exhibit a stress plateau within a range of shear rates. Under startup of a steady shear rate flow within the stress plateau, both linear and branched samples exhibit strong transient shear thinning flow profiles. However, while the flow of the linear solution evolves to a banded structure at longer times, the flow of the branched solution transitions to a curved velocity profile with no evidence of shear banding. Flow-induced birefringence measurements indicate transient birefringence banding with strong micellar alignment in the high shear band for the linear solution. The transient flow-induced birefringence is stronger for the branched system at an otherwise identical Wi. At longer times, the birefringence bands are replaced by a chaotic flow reminiscent of elastic instabilities. Visualization of the flow-induced turbidity in the velocity gradient-vorticity plane reveals quasi-steady banding with a turbidity contrast between high and low shear bands in the linear solution. However, the turbidity evolves uniformly within the gap of the TC cell for the branched solution, corroborating the non-banded quasi-steady velocimetry results. Finally, we show that while elastic instabilities in the linear solution emerge in the high shear band, the flow of branched solution at high Wi becomes unstable due to end effects, with growing end regions that ultimately span the entire axial length of the TC cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...