Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622339

RESUMEN

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , Fitomejoramiento
2.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537634

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Asunto(s)
Genoma , Genómica , Ratas , Animales , Genoma/genética , Anotación de Secuencia Molecular , Secuenciación Completa del Genoma , Variación Genética/genética
3.
Mol Ecol ; 33(6): e17299, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38380534

RESUMEN

Additive and dominance genetic variances underlying the expression of quantitative traits are important quantities for predicting short-term responses to selection, but they are notoriously challenging to estimate in most non-model wild populations. Specifically, large-sized or panmictic populations may be characterized by low variance in genetic relatedness among individuals which, in turn, can prevent accurate estimation of quantitative genetic parameters. We used estimates of genome-wide identity-by-descent (IBD) sharing from autosomal SNP loci to estimate quantitative genetic parameters for ecologically important traits in nine-spined sticklebacks (Pungitius pungitius) from a large, outbred population. Using empirical and simulated datasets, with varying sample sizes and pedigree complexity, we assessed the performance of different crossing schemes in estimating additive genetic variance and heritability for all traits. We found that low variance in relatedness characteristic of wild outbred populations with high migration rate can impair the estimation of quantitative genetic parameters and bias heritability estimates downwards. On the other hand, the use of a half-sib/full-sib design allowed precise estimation of genetic variance components and revealed significant additive variance and heritability for all measured traits, with negligible dominance contributions. Genome-partitioning and QTL mapping analyses revealed that most traits had a polygenic basis and were controlled by genes at multiple chromosomes. Furthermore, different QTL contributed to variation in the same traits in different populations suggesting heterogeneous underpinnings of parallel evolution at the phenotypic level. Our results provide important guidelines for future studies aimed at estimating adaptive potential in the wild, particularly for those conducted in outbred large-sized populations.


Asunto(s)
Genoma , Herencia Multifactorial , Humanos , Genoma/genética , Mapeo Cromosómico , Fenotipo , Modelos Genéticos , Polimorfismo de Nucleótido Simple/genética
4.
Nat Commun ; 14(1): 5620, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699868

RESUMEN

Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.


Asunto(s)
Mariposas Diurnas , Animales , Tamaño del Genoma , Mariposas Diurnas/genética , Genómica , Fenotipo , Filogenia
5.
bioRxiv ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37214860

RESUMEN

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

6.
Mol Ecol ; 32(13): 3440-3449, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37000426

RESUMEN

Inbreeding depression refers to the reduced fitness of offspring produced by genetically-related individuals and is expected to be rare in large, outbred populations. When it occurs, marked fitness loss is possible as large populations can carry a substantial load of recessive harmful mutations which are normally sheltered at the heterozygous state. Using experimental cross data and genome-wide identity-by-descent (IBD) relationships from an outbred marine nine-spined stickleback (Pungitius pungitius) population, we documented a significant decrease in offspring survival probability with increasing parental IBD sharing associated with an average inbreeding load (B) of 10.5. Interestingly, we found that this relationship was also underlined by a positive effect of paternal inbreeding coefficient on offspring survival, suggesting that certain combinations of parental inbreeding and genetic relatedness among mates may promote offspring survival. Our results demonstrate the potential for substantial inbreeding load in an outbred population and emphasize the need to consider fine-scale genetic relatedness in future studies of inbreeding depression in the wild.


Asunto(s)
Depresión Endogámica , Humanos , Depresión Endogámica/genética , Endogamia , Mutación , Genoma , Heterocigoto
7.
Sci Adv ; 9(12): eabq3713, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947619

RESUMEN

Understanding the evolutionary origins and factors maintaining alternative life history strategies (ALHS) within species is a major goal of evolutionary research. While alternative alleles causing discrete ALHS are expected to purge or fix over time, one-third of the ~90 species of Colias butterflies are polymorphic for a female-limited ALHS called Alba. Whether Alba arose once, evolved in parallel, or has been exchanged among taxa is currently unknown. Using comparative genome-wide association study (GWAS) and population genomic analyses, we placed the genetic basis of Alba in time-calibrated phylogenomic framework, revealing that Alba evolved once near the base of the genus and has been subsequently maintained via introgression and balancing selection. CRISPR-Cas9 mutagenesis was then used to verify a putative cis-regulatory region of Alba, which we identified using phylogenetic foot printing. We hypothesize that this cis-regulatory region acts as a modular enhancer for the induction of the Alba ALHS, which has likely facilitated its long evolutionary persistence.


Asunto(s)
Mariposas Diurnas , Rasgos de la Historia de Vida , Animales , Femenino , Filogenia , Mariposas Diurnas/genética , Estudio de Asociación del Genoma Completo , Evolución Biológica
8.
Curr Biol ; 33(6): 1009-1018.e7, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36822202

RESUMEN

In the face of the human-caused biodiversity crisis, understanding the theoretical basis of conservation efforts of endangered species and populations has become increasingly important. According to population genetics theory, population subdivision helps organisms retain genetic diversity, crucial for adaptation in a changing environment. Habitat topography is thought to be important for generating and maintaining population subdivision, but empirical cases are needed to test this assumption. We studied Saimaa ringed seals, landlocked in a labyrinthine lake and recovering from a drastic bottleneck, with additional samples from three other ringed seal subspecies. Using whole-genome sequences of 145 seals, we analyzed the distribution of variation and genetic relatedness among the individuals in relation to the habitat shape. Despite a severe history of genetic bottlenecks with prevalent homozygosity in Saimaa ringed seals, we found evidence for the population structure mirroring the subregions of the lake. Our genome-wide analyses showed that the subpopulations had retained unique variation and largely complementary patterns of homozygosity, highlighting the significance of habitat connectivity in conservation biology and the power of genomic tools in understanding its impact. The central role of the population substructure in preserving genetic diversity at the metapopulation level was confirmed by simulations. Integration of genetic analyses in conservation decisions gives hope to Saimaa ringed seals and other endangered species in fragmented habitats.


Asunto(s)
Caniformia , Phocidae , Animales , Humanos , Estudio de Asociación del Genoma Completo , Genética de Población , Ecosistema , Phocidae/genética , Especies en Peligro de Extinción , Caniformia/genética , Variación Genética
9.
Heredity (Edinb) ; 130(3): 114-121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566319

RESUMEN

Map distance is one of the key measures in genetics and indicates the expected number of crossovers between two loci. Map distance is estimated from the observed recombination frequency using mapping functions, the most widely used of those, Haldane and Kosambi, being developed at the time when the number of markers was low and unobserved crossovers had a substantial effect on the recombination fractions. In contemporary high-density marker data, the probability of multiple crossovers between adjacent loci is negligible and different mapping functions yield the same result, that is, the recombination frequency between adjacent loci is equal to the map distance in Morgans. However, high-density linkage maps contain an interpretation problem: the map distance over a long interval is additive and its association with recombination frequency is not defined. Here, we demonstrate with high-density linkage maps from humans and stickleback fishes that the inverses of Haldane's and Kosambi's mapping functions systematically underpredict recombination frequencies from map distance. To remedy this, we formulate a piecewise function that yields more accurate predictions of recombination frequency from map distance. Our results demonstrate that the association between map distance and recombination frequency is context-dependent and without a universal solution.


Asunto(s)
Recombinación Genética , Humanos , Mapeo Cromosómico/métodos , Probabilidad , Ligamiento Genético
10.
J Appl Genet ; 63(4): 633-650, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35691996

RESUMEN

A good knowledge of the genome properties of the populations makes it possible to optimize breeding methods, in particular genomic selection (GS). In oil palm (Elaeis guineensis Jacq), the world's main source of vegetable oil, this would provide insight into the promising GS results obtained so far. The present study considered two complex breeding populations, Deli and La Mé, with 943 individuals and 7324 single-nucleotide polymorphisms (SNPs) from genotyping-by-sequencing. Linkage disequilibrium (LD), haplotype sharing, effective size (Ne), and fixation index (Fst) were investigated. A genetic linkage map spanning 1778.52 cM and with a recombination rate of 2.85 cM/Mbp was constructed. The LD at r2=0.3, considered the minimum to get reliable GS results, spanned over 1.05 cM/0.22 Mbp in Deli and 0.9 cM/0.21 Mbp in La Mé. The significant degree of differentiation existing between Deli and La Mé was confirmed by the high Fst value (0.53), the pattern of correlation of SNP heterozygosity and allele frequency among populations, and the decrease of persistence of LD and of haplotype sharing among populations with increasing SNP distance. However, the level of resemblance between the two populations over short genomic distances (correlation of r values between populations >0.6 for SNPs separated by <0.5 cM/1 kbp and percentage of common haplotypes >40% for haplotypes <3600 bp/0.20 cM) likely explains the superiority of GS models ignoring the parental origin of marker alleles over models taking this information into account. The two populations had low Ne (<5). Population-specific genetic maps and reference genomes are recommended for future studies.


Asunto(s)
Arecaceae , Fitomejoramiento , Alelos , Arecaceae/genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genética
11.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200505, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35634924

RESUMEN

Structural colours, produced by the reflection of light from ultrastructures, have evolved multiple times in butterflies. Unlike pigmentary colours and patterns, little is known about the genetic basis of these colours. Reflective structures on wing-scale ridges are responsible for iridescent structural colour in many butterflies, including the Müllerian mimics Heliconius erato and Heliconius melpomene. Here, we quantify aspects of scale ultrastructure variation and colour in crosses between iridescent and non-iridescent subspecies of both of these species and perform quantitative trait locus (QTL) mapping. We show that iridescent structural colour has a complex genetic basis in both species, with offspring from crosses having a wide variation in blue colour (both hue and brightness) and scale structure measurements. We detect two different genomic regions in each species that explain modest amounts of this variation, with a sex-linked QTL in H. erato but not H. melpomene. We also find differences between species in the relationships between structure and colour, overall suggesting that these species have followed different evolutionary trajectories in their evolution of structural colour. We then identify genes within the QTL intervals that are differentially expressed between subspecies and/or wing regions, revealing likely candidates for genes controlling structural colour formation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/genética , Mapeo Cromosómico , Color , Pigmentación/genética , Alas de Animales
12.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210226, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35306892

RESUMEN

There is growing evidence from diverse taxa for sex differences in the genomic landscape of recombination, but the causes and consequences of these differences remain poorly understood. Strong recombination landscape dimorphism between the sexes could have important implications for the dynamics of sex chromosome evolution because low recombination in the heterogametic sex can favour the spread of sexually antagonistic alleles. Here, we present a sex-specific linkage map and revised genome assembly of Rumex hastatulus and provide the first evidence and characterization of sex differences in recombination landscape in a dioecious plant. We present data on significant sex differences in recombination, with regions of very low recombination in males covering over half of the genome. This pattern is evident on both sex chromosomes and autosomes, suggesting that pre-existing differences in recombination may have contributed to sex chromosome formation and divergence. Our analysis of segregation distortion suggests that haploid selection due to pollen competition occurs disproportionately in regions with low male recombination. We hypothesize that sex differences in the recombination landscape have contributed to the formation of a large heteromorphic pair of sex chromosomes in R. hastatulus, but more comparative analyses of recombination will be important to investigate this hypothesis further. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Asunto(s)
Rumex , Cromosomas de las Plantas/genética , Plantas/genética , Recombinación Genética , Rumex/genética , Caracteres Sexuales , Cromosomas Sexuales/genética
13.
Gigascience ; 11(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022701

RESUMEN

BACKGROUND: The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. RESULTS: The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92-94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. CONCLUSIONS: The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.


Asunto(s)
Mariposas Diurnas , Fritillaria , Animales , Mariposas Diurnas/genética , Mapeo Cromosómico , Cromosomas/genética , Fritillaria/genética , Genoma , Masculino
14.
Mol Ecol Resour ; 21(6): 2166-2176, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33955177

RESUMEN

We describe an integrative approach to improve contiguity and haploidy of a reference genome assembly and demonstrate its impact with practical examples. With two novel features of Lep-Anchor software and a combination of dense linkage maps, overlap detection and bridging long reads, we generated an improved assembly of the nine-spined stickleback (Pungitius pungitius) reference genome. We were able to remove a significant number of haplotypic contigs, detect more genetic variation and improve the contiguity of the genome, especially that of X chromosome. However, improved scaffolding cannot correct for mosaicism of erroneously assembled contigs, demonstrated by a de novo assembly of a 1.6-Mbp inversion. Qualitatively similar gains were obtained with the genome of three-spined stickleback (Gasterosteus aculeatus). Since the utility of genome-wide sequencing data in biological research depends heavily on the quality of the reference genome, the improved and fully automated approach described here should be helpful in refining reference genome assemblies.


Asunto(s)
Genoma , Smegmamorpha , Animales , Mapeo Cromosómico , Smegmamorpha/genética , Programas Informáticos
15.
Insects ; 12(2)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669192

RESUMEN

The Asian tiger mosquito, Aedes albopictus, is an invasive vector mosquito of substantial public health concern. The large genome size (~1.19-1.28 Gb by cytofluorometric estimates), comprised of ~68% repetitive DNA sequences, has made it difficult to produce a high-quality genome assembly for this species. We constructed a high-density linkage map for Ae. albopictus based on 111,328 informative SNPs obtained by RNAseq. We then performed a linkage-map anchored reassembly of AalbF2, the genome assembly produced by Palatini et al. (2020). Our reassembled genome sequence, AalbF3, represents several improvements relative to AalbF2. First, the size of the AalbF3 assembly is 1.45 Gb, almost half the size of AalbF2. Furthermore, relative to AalbF2, AalbF3 contains a higher proportion of complete and single-copy BUSCO genes (84.3%) and a higher proportion of aligned RNAseq reads that map concordantly to a single location of the genome (46%). We demonstrate the utility of AalbF3 by using it as a reference for a bulk-segregant-based comparative genomics analysis that identifies chromosomal regions with clusters of candidate SNPs putatively associated with photoperiodic diapause, a crucial ecological adaptation underpinning the rapid range expansion and climatic adaptation of A. albopictus.

16.
Genome Biol Evol ; 13(5)2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33749729

RESUMEN

The comma butterfly (Polygonia c-album, Nymphalidae, Lepidoptera) is a model insect species, most notably in the study of phenotypic plasticity and plant-insect coevolutionary interactions. In order to facilitate the integration of genomic tools with a diverse body of ecological and evolutionary research, we assembled the genome of a Swedish comma using 10X sequencing, scaffolding with matepair data, genome polishing, and assignment to linkage groups using a high-density linkage map. The resulting genome is 373 Mb in size, with a scaffold N50 of 11.7 Mb and contig N50 of 11,2Mb. The genome contained 90.1% of single-copy Lepidopteran orthologs in a BUSCO analysis of 5,286 genes. A total of 21,004 gene-models were annotated on the genome using RNA-Seq data from larval and adult tissue in combination with proteins from the Arthropoda database, resulting in a high-quality annotation for which functional annotations were generated. We further documented the quality of the chromosomal assembly via synteny assessment with Melitaea cinxia. The resulting annotated, chromosome-level genome will provide an important resource for investigating coevolutionary dynamics and comparative analyses in Lepidoptera.


Asunto(s)
Mariposas Diurnas/genética , Animales , Mariposas Diurnas/clasificación , Mapeo Cromosómico , Cromosomas , Genoma de los Insectos , Anotación de Secuencia Molecular
17.
Ecol Evol ; 11(1): 89-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33437416

RESUMEN

The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.

18.
Mol Ecol ; 30(9): 1946-1961, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33464655

RESUMEN

Repeated and independent adaptation to specific environmental conditions from standing genetic variation is common. However, if genetic variation is limited, the evolution of similar locally adapted traits may be restricted to genetically different and potentially less optimal solutions or prevented from happening altogether. Using a quantitative trait locus (QTL) mapping approach, we identified the genomic regions responsible for the repeated pelvic reduction (PR) in three crosses between nine-spined stickleback populations expressing full and reduced pelvic structures. In one cross, PR mapped to linkage group 7 (LG7) containing the gene Pitx1, known to control pelvic reduction also in the three-spined stickleback. In the two other crosses, PR was polygenic and attributed to 10 novel QTL, of which 90% were unique to specific crosses. When screening the genomes from 27 different populations for deletions in the Pitx1 regulatory element, these were only found in the population in which PR mapped to LG7, even though the morphological data indicated large-effect QTL for PR in several other populations as well. Consistent with the available theory and simulations parameterized on empirical data, we hypothesize that the observed variability in genetic architecture of PR is due to heterogeneity in the spatial distribution of standing genetic variation caused by >2× stronger population structuring among freshwater populations and >10× stronger genetic isolation by distance in the sea in nine-spined sticklebacks as compared to three-spined sticklebacks.


Asunto(s)
Smegmamorpha , Animales , Mapeo Cromosómico , Ligamiento Genético , Genética de Población , Genoma , Smegmamorpha/genética
19.
PLoS Biol ; 19(1): e3001022, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465061

RESUMEN

Plants and insects often use the same compounds for chemical communication, but not much is known about the genetics of convergent evolution of chemical signals. The terpene (E)-ß-ocimene is a common component of floral scent and is also used by the butterfly Heliconius melpomene as an anti-aphrodisiac pheromone. While the biosynthesis of terpenes has been described in plants and microorganisms, few terpene synthases (TPSs) have been identified in insects. Here, we study the recent divergence of 2 species, H. melpomene and Heliconius cydno, which differ in the presence of (E)-ß-ocimene; combining linkage mapping, gene expression, and functional analyses, we identify 2 novel TPSs. Furthermore, we demonstrate that one, HmelOS, is able to synthesise (E)-ß-ocimene in vitro. We find no evidence for TPS activity in HcydOS (HmelOS ortholog of H. cydno), suggesting that the loss of (E)-ß-ocimene in this species is the result of coding, not regulatory, differences. The TPS enzymes we discovered are unrelated to previously described plant and insect TPSs, demonstrating that chemical convergence has independent evolutionary origins.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Afrodisíacos/antagonistas & inhibidores , Mariposas Diurnas , Feromonas/metabolismo , Transferasas Alquil y Aril/genética , Animales , Reacción de Prevención/efectos de los fármacos , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Evolución Molecular , Femenino , Genes de Insecto , Masculino , Feromonas/farmacología , Filogenia , Conducta Sexual Animal/efectos de los fármacos , Especificidad de la Especie
20.
J Evol Biol ; 33(11): 1516-1529, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32939870

RESUMEN

Mimetic systems allow us to address the question of whether the same genes control similar phenotypes in different species. Although widespread parallels have been found for major effect loci, much less is known about genes that control quantitative trait variation. In this study, we identify and compare the loci that control subtle changes in the size and shape of forewing pattern elements in two Heliconius butterfly co-mimics. We use quantitative trait locus (QTL) analysis with a multivariate phenotyping approach to map the variation in red pattern elements across the whole forewing surface of Heliconius erato and Heliconius melpomene. These results are compared with a QTL analysis of univariate trait changes, and show that our resolution for identifying small effect loci is somewhat improved with the multivariate approach, but also that different loci are detected with these different approaches. QTL likely corresponding to the known patterning gene optix were found in both species but otherwise, a remarkably low level of genetic parallelism was found. This lack of similarity indicates that the genetic basis of convergent traits may not be as predictable as assumed from studies that focus solely on Mendelian traits.


Asunto(s)
Evolución Biológica , Mimetismo Biológico , Mariposas Diurnas/genética , Pigmentación/genética , Sitios de Carácter Cuantitativo , Animales , Cromosomas de Insectos , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA