Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
NPJ Vaccines ; 8(1): 140, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758790

RESUMEN

The apicomplexan parasite Babesia bovis is responsible for bovine babesiosis, a poorly controlled tick-borne disease of global impact. The widely conserved gametocyte protein HAPLESS2/GCS1 (HAP2) is uniquely expressed on the surface of B. bovis sexual stage parasites and is a candidate for transmission-blocking vaccines (TBV). Here, we tested whether vaccination of calves with recombinant HAP2 (rHAP2) interferes with the transmission of B. bovis by competent ticks. Calves vaccinated with rHAP2 (n = 3), but not control animals (n = 3) developed antibodies specific to the vaccine antigen. Vaccinated and control animals were infested with Rhipicephalus microplus larvae and subsequently infected with virulent blood stage B. bovis parasites by needle inoculation, with all animals developing clinical signs of acute babesiosis. Engorged female ticks fed on the infected calves were collected for oviposition, hatching, and obtention of larvae. Transmission feeding was then conducted using pools of larvae derived from ticks fed on rHAP2-vaccinated or control calves. Recipient calves (n = 3) exposed to larvae derived from control animals, but none of the recipient calves (n = 3) challenged with larvae from ticks fed on rHAP2-vaccinated animals, developed signs of acute babesiosis within 11 days after tick infestation. Antibodies against B. bovis antigens and parasite DNA were found in all control recipient animals, but not in any of the calves exposed to larvae derived from HAP2-vaccinated animals, consistent with the absence of B. bovis infection via tick transmission. Overall, our results are consistent with the abrogation of parasite tick transmission in rHAP2-vaccinated calves, confirming this antigen as a prime TBV candidate against B. bovis.

2.
Anim Dis ; 2(1): 29, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532606

RESUMEN

Lymnaeid snails are key intermediate hosts for the development and survival of Fasciola spp., the causative agent of Fascioliasis which are economically important parasites infecting humans and livestock globally. The current control method for treating Fascioliasis is heavily reliant on anthelmintic drugs, particularly Triclabendazole (TCBZ) which has resulted in drug-resistant parasites and poses significant risk as there are no long-term efficacious alternatives available. Sustainable control measures at the farm level could include both parasite and snail control will play an important role in Fasciola spp. control and reduce the reliance on anthelmintic drugs. Implementation of such sustainable control measures requires effective identification of snails on the property however Lymnaeid snails are small and difficult to physically locate. Snail identification using an environmental DNA approach is a recent approach in which physically locating snails are not required. Austropeplea tomentosa, is the primary intermediate snail host for F. hepatica transmission in South-East Australia and we present an in-field loop-mediated isothermal amplification and water filtering method for the detection of A. tomentosa eDNA from water samples to improve current surveillance methods. This methodology is highly sensitive with a detection limit of 5 × 10- 6 ng/µL, detected in < 20 minutes, with cumulative sample preparation and amplification time under 1 hour. This proposed workflow could assist in monitoring areas to determine the risk of Fascioliasis infection and implement strategies to manage snail populations to ultimately reduce the risk of infection for humans and livestock. Supplementary Information: The online version contains supplementary material available at 10.1186/s44149-022-00061-9.

3.
Vaccines (Basel) ; 10(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062784

RESUMEN

Babesiosis is a disease caused by tickborne hemoprotozoan apicomplexan parasites of the genus Babesia that negatively impacts public health and food security worldwide. Development of effective and sustainable vaccines against babesiosis is currently hindered in part by the absence of definitive host correlates of protection. Despite that, studies in Babesia microti and Babesia bovis, major causative agents of human and bovine babesiosis, respectively, suggest that early activation of innate immune responses is crucial for vertebrates to survive acute infection. Trained immunity (TI) is defined as the development of memory in vertebrate innate immune cells, allowing more efficient responses to subsequent specific and non-specific challenges. Considering that Mycobacterium bovis bacillus Calmette-Guerin (BCG), a widely used anti-tuberculosis attenuated vaccine, induces strong TI pro-inflammatory responses, we hypothesize that BCG TI may protect vertebrates against acute babesiosis. This premise is supported by early investigations demonstrating that BCG inoculation protects mice against experimental B. microti infection and recent observations that BCG vaccination decreases the severity of malaria in children infected with Plasmodium falciparum, a Babesia-related parasite. We also discuss the potential use of TI in conjunction with recombinant BCG vaccines expressing Babesia immunogens. In conclusion, by concentrating on human and bovine babesiosis, herein we intend to raise awareness of BCG TI as a strategy to efficiently control Babesia infection.

4.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34835144

RESUMEN

Fasciolosis, caused by the liver flukes Fasciola hepatica and F. gigantica, is an economically important and globally distributed zoonotic disease. Liver fluke infections in livestock cause significant losses in production and are of particular concern to regions where drug resistance is emerging. Antigens of the F. hepatica surface tegument represent promising vaccine candidates for controlling this disease. Tetraspanins are integral tegumental antigens that have shown partial protection as vaccine candidates against other trematode species. The Escherichia coli heat-labile enterotoxin's B subunit (LTB) is a potent mucosal adjuvant capable of inducing an immune response to fused antigens. This study investigates the potential of F. hepatica tetraspanin 2 extracellular loop 2 (rFhTSP2) as a protective vaccine antigen and determines if fusion of FhTSP2 to LTB can enhance protection in cattle. Cattle were immunised subcutaneously with rFhTSP2 mixed in the Freund's adjuvant and intranasally with rLTB-FhTSP2 in saline, accounting for equal molar ratios of tetraspanin in both groups. Vaccination with rFhTSP2 stimulated a strong specific serum IgG response, whereas there was no significant serum IgG response following rLTB-FhTSP2 intranasal vaccination. There was no substantial antigen specific serum IgA generated in all groups across the trial. Contrastingly, after the fluke challenge, a rise in antigen specific saliva IgA was observed in both vaccination groups on Day 42, with the rLTB-FhTSP2 vaccination group showing significant mucosal IgA production at Day 84. However, neither vaccine group showed a significant reduction of fluke burden nor faecal egg output. These results suggest that intranasal vaccination with rLTB-FhTSP2 does elicit a humoral mucosal response but further work is needed to evaluate if mucosal delivery of liver fluke antigens fused to LTB is a viable vaccine strategy.

5.
Parasit Vectors ; 14(1): 210, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879245

RESUMEN

BACKGROUND: Babesia bovis reproduces sexually in the gut of its tick vector Rhipicephalus microplus, which involves expression of 6cys A and 6cys B proteins. Members of the widely conserved 6cys superfamily are candidates for transmission blocking vaccines (TBV), but intricacies in the immunogenicity of the 6cys proteins in the related Plasmodium parasites required the identification of transmission blocking domains in these molecules for vaccine design. Hereby, the immunogenic efficacy of recombinant (r) B. bovis 6cys A and B proteins as a TBV formulation was studied. METHODS: The immunogenicity of r6cys A and 6cys B proteins expressed in a eukaryotic system was evaluated in a cattle immunization trial (3 immunized and 3 control calves). A B. bovis sexual stage induction in vitro inhibition assay to assess the ability of antibodies to block the production of sexual forms by the parasite was developed. RESULTS: Immunized cattle generated antibodies against r6cys A and r6cys B that were unable to block sexual reproduction of the parasite in ticks. Additionally, these antibodies also failed in recognizing native 6cys A and 6cys B and peptides representing 6cys A and 6cys B functional domains and in inhibiting the development of sexual forms in an in vitro induction system. In contrast, rabbit antibodies generated against synthetic peptides representing predicted B-cell epitopes of 6cys A and 6cys B recognized recombinant and native forms of both 6cys proteins as well as peptides representing 6cys A and 6cys B functional domains and were able to neutralize development of sexual forms of the parasite in vitro. CONCLUSIONS: These data, combined with similar work performed on Plasmodium 6cys proteins, indicate that an effective 6cys protein-based TBV against B. bovis will require identifying and targeting selected regions of proteins containing epitopes able to reduce transmission.


Asunto(s)
Babesia bovis/inmunología , Babesiosis/prevención & control , Enfermedades de los Bovinos/prevención & control , Proteínas Protozoarias/inmunología , Vacunas Antiprotozoos/inmunología , Animales , Anticuerpos Antiprotozoarios/inmunología , Babesia bovis/genética , Babesia bovis/fisiología , Babesiosis/inmunología , Babesiosis/parasitología , Babesiosis/transmisión , Bovinos , Enfermedades de los Bovinos/parasitología , Enfermedades de los Bovinos/transmisión , Evaluación Preclínica de Medicamentos , Femenino , Masculino , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/genética , Vacunas Antiprotozoos/administración & dosificación , Vacunas Antiprotozoos/genética , Conejos , Reproducción , Rhipicephalus/parasitología , Rhipicephalus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...