Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Trop Med Infect Dis ; 9(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787027

RESUMEN

The genetic diversity within the circumsporozoite surface protein (PvCSP) of Plasmodium vivax, the predominant malaria species in Thailand, is primarily observed in the northwestern region along the Thailand-Myanmar border. However, as P. vivax cases shift to southern provinces, particularly Yala Province near the Thailand-Malaysia border, PvCSP diversity remains understudied. Between 2018 and 2020, 89 P. vivax isolates were collected in Yala Province, a significant malaria hotspot. Employing polymerase chain reaction amplification, restriction fragment length polymorphism (PCR-RFLP), and DNA sequencing, the gene encoding PvCSP (Pvcsp) was analyzed. All Yala P. vivax isolates belonged to the VK210 type, distinct from strains in the western region near the Myanmar border. The central repeat region of Pvcsp revealed two common peptide repeat motifs-GDRADGQPA and GDRAAGQPA-across all southern isolates. Sequence analysis identified two subtypes, with S1 more prevalent (92%) than S2 (8%). This study underscores the limited diversity of VK210 variants of P. vivax populations in southern Thailand. These baseline findings facilitate monitoring for potential new parasite variants, aiding in the future control and management of P. vivax in the region.

2.
Am J Trop Med Hyg ; 111(1): 11-25, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38714193

RESUMEN

The South Asia International Center of Excellence for Malaria Research, an NIH-funded collaborative program, investigated the epidemiology of malaria in the Indian state of Goa through health facility-based data collected from the Goa Medical College and Hospital (GMC), the state's largest tertiary healthcare facility, between 2012 and 2021. Our study investigated region-specific spatial and temporal patterns of malaria transmission in Goa and the factors driving such patterns. Over the past decade, the number of malaria cases, inpatients, and deaths at the GMC decreased significantly after a peak in 2014-2015. However, the proportion of severe malaria cases increased over the study period. Also, a trend of decreasing average parasitemia and increasing average gametocyte density suggests a shift toward submicroscopic infections and an increase in transmission commitment characteristic of low-transmission regions. Although transmission occurred throughout the year, 75% of the cases occurred between June and December, overlapping with the monsoon (June-October), which featured rainfall above yearly average, minimal diurnal temperature variation, and high relative humidity. Sociodemographic factors also had a significant association with malaria cases, with cases being more frequent in the 15-50-year-old age group, men, construction workers, and people living in urban areas within the GMC catchment region. Our environmental model of malaria transmission projects almost negligible transmission at the beginning of 2025 (annual parasitic index: 0.0095, 95% CI: 0.0075-0.0114) if the current control measures continue undisrupted.


Asunto(s)
Malaria , Humanos , India/epidemiología , Adolescente , Femenino , Adulto , Masculino , Niño , Persona de Mediana Edad , Adulto Joven , Preescolar , Lactante , Malaria/transmisión , Malaria/epidemiología , Malaria/prevención & control , Anciano , Estaciones del Año , Hospitales/estadística & datos numéricos , Erradicación de la Enfermedad , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Malaria Falciparum/prevención & control
3.
Antimicrob Agents Chemother ; 68(2): e0068423, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38193705

RESUMEN

Due to the spread of resistance to front-line artemisinin derivatives worldwide, there is a need for new antimalarials. Tartrolon E (TrtE), a secondary metabolite of a symbiotic bacterium of marine bivalve mollusks, is a promising antimalarial because it inhibits the growth of sexual and asexual blood stages of Plasmodium falciparum at sub-nanomolar levels. The potency of TrtE warrants further investigation into its mechanism of action, cytotoxicity, and ease with which parasites may evolve resistance to it.


Asunto(s)
Antimaláricos , Artemisininas , Lactonas , Malaria Falciparum , Humanos , Plasmodium falciparum , Artemisininas/farmacología , Antimaláricos/farmacología , Malaria Falciparum/parasitología
4.
Malar J ; 22(1): 250, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653486

RESUMEN

BACKGROUND: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. METHODS: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either - 80 °C or liquid nitrogen were also compared. RESULTS: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7-10 years) storage at - 80 °C on parasite recovery, enrichment or viability was observed. CONCLUSIONS: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Humanos , Bancos de Muestras Biológicas , Reproducibilidad de los Resultados , Parasitemia
5.
bioRxiv ; 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993272

RESUMEN

Background: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. Methods: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either -80°C or liquid nitrogen were also compared. Results: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P<0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection with 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (>20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 hours. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average 30.0% post-MACS parasitemia and an average 5.30 × 10 5 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 day) or long term (7 - 10 year) storage at -80°C on parasite recovery, enrichment or viability was observed. Conclusions: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.

6.
Vaccines (Basel) ; 12(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276660

RESUMEN

Malaria remains a major global health challenge, causing over 0.6 million yearly deaths. To understand naturally acquired immunity in adult human populations in malaria-prevalent regions, improved serological tools are needed, particularly where multiple malaria parasite species co-exist. Slide-based and bead-based multiplex approaches can help characterize antibodies in malaria patients from endemic regions, but these require pure, well-defined antigens. To efficiently bypass purification steps, codon-optimized malaria antigen genes with N-terminal FLAG-tag and C-terminal Ctag sequences were expressed in a wheat germ cell-free system and adsorbed on functionalized BioPlex beads. In a pilot study, 15 P. falciparum antigens, 8 P. vivax antigens, and a negative control (GFP) were adsorbed individually on functionalized bead types through their Ctag. To validate the multiplexing powers of this platform, 10 P. falciparum-infected patient sera from a US NIH MESA-ICEMR study site in Goa, India, were tested against all 23 parasite antigens. Serial dilution of patient sera revealed variations in potency and breadth of antibodies to various parasite antigens. Individual patients revealed informative variations in immunity to P. falciparum versus P. vivax. This multiplex approach to malaria serology captures varying immunity to different human malaria parasite species and different parasite antigens. This approach can be scaled to track the dynamics of antibody production during one or more human malaria infections.

7.
Proc Natl Acad Sci U S A ; 119(51): e2213116119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36512492

RESUMEN

New antimicrobials are needed for the treatment of extensively drug-resistant Acinetobacter baumannii. The de novo pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated drug target for malaria and human autoimmune diseases. We provide genetic evidence that A. baumannii DHODH (AbDHODH) is essential for bacterial survival in rodent infection models. We chemically validate the target by repurposing a unique library of ~450 triazolopyrimidine/imidazopyrimidine analogs developed for our malaria DHODH program to identify 21 compounds with submicromolar activity on AbDHODH. The most potent (DSM186, DHODH IC50 28 nM) had a minimal inhibitory concentration of ≤1 µg/ml against geographically diverse A. baumannii strains, including meropenem-resistant isolates. A structurally related analog (DSM161) with a long in vivo half-life conferred significant protection in the neutropenic mouse thigh infection model. Encouragingly, the development of resistance to these compounds was not identified in vitro or in vivo. Lastly, the X-ray structure of AbDHODH bound to DSM186 was solved to 1.4 Å resolution. These data support the potential of AbDHODH as a drug target for the development of antimicrobials for the treatment of A. baumannii and potentially other high-risk bacterial infections.


Asunto(s)
Acinetobacter baumannii , Humanos , Ratones , Animales , Dihidroorotato Deshidrogenasa , Pruebas de Sensibilidad Microbiana , Meropenem , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
8.
Am J Trop Med Hyg ; 107(4_Suppl): 118-123, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228906

RESUMEN

The Malaria Evolution in South Asia (MESA) International Center of Excellence for Malaria Research (ICEMR) conducted research studies at multiple sites in India to record blood-slide positivity over time, but also to study broader aspects of the disease. From the Southwest of India (Goa) to the Northeast (Assam), the MESA-ICEMR invested in research equipment, operational capacity, and trained personnel to observe frequencies of Plasmodium falciparum and Plasmodium vivax infections, clinical presentations, treatment effectiveness, vector transmission, and reinfections. With Government of India partners, Indian and U.S. academics, and trained researchers on the ground, the MESA-ICEMR team contributes information on malaria in selected parts of India.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Asia/epidemiología , Humanos , India/epidemiología , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum , Plasmodium vivax
9.
Am J Trop Med Hyg ; 107(4_Suppl): 107-117, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36228910

RESUMEN

The Malaria Evolution in South Asia (MESA) International Center for Excellence in Malaria Research (ICEMR) was established by the US National Institutes of Health (US NIH) as one of 10 malaria research centers in endemic countries. In 10 years of hospital-based and field-based work in India, the MESA-ICEMR has documented the changing epidemiology and transmission of malaria in four different parts of India. Malaria Evolution in South Asia-ICEMR activities, in collaboration with Indian partners, are carried out in the broad thematic areas of malaria case surveillance, vector biology and transmission, antimalarial resistance, pathogenesis, and host response. The program integrates insights from surveillance and field studies with novel basic science studies. This is a two-pronged approach determining the biology behind the disease patterns seen in the field, and generating new relevant biological questions about malaria to be tested in the field. Malaria Evolution in South Asia-ICEMR activities inform local and international stakeholders on the current status of malaria transmission in select parts of South Asia including updates on regional vectors of transmission of local parasites. The community surveys and new laboratory tools help monitor ongoing efforts to control and eliminate malaria in key regions of South Asia including the state of evolving antimalarial resistance in different parts of India, new host biomarkers of recent infection, and molecular markers of pathogenesis from uncomplicated and severe malaria.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/uso terapéutico , Asia/epidemiología , Humanos , India/epidemiología , Cooperación Internacional , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , National Institutes of Health (U.S.) , Estados Unidos/epidemiología
10.
Antimicrob Agents Chemother ; 65(9): e0058621, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34152814

RESUMEN

Malaria parasites have three genomes: a nuclear genome, a mitochondrial genome, and an apicoplast genome. Since the apicoplast is a plastid organelle of prokaryotic origin and has no counterpart in the human host, it can be a source of novel targets for antimalarials. Plasmodium falciparum DNA gyrase (PfGyr) A and B subunits both have apicoplast-targeting signals. First, to test the predicted localization of this enzyme in the apicoplast and the breadth of its function at the subcellular level, nuclear-encoded PfGyrA was disrupted using CRISPR/Cas9 gene editing. Isopentenyl pyrophosphate (IPP) is known to rescue parasites from apicoplast inhibitors. Indeed, successful growth and characterization of PfΔGyrA was possible in the presence of IPP. PfGyrA disruption was accompanied by loss of plastid acyl-carrier protein (ACP) immunofluorescence and the plastid genome. Second, ciprofloxacin, an antibacterial gyrase inhibitor, has been used for malaria prophylaxis, but there is a need for a more detailed description of the mode of action of ciprofloxacin in malaria parasites. As predicted, PfΔGyrA clone supplemented with IPP was less sensitive to ciprofloxacin but not to the nuclear topoisomerase inhibitor etoposide. At high concentrations, however, ciprofloxacin continued to inhibit IPP-rescued PfΔGyrA, possibly suggesting that ciprofloxacin may have an additional nonapicoplast target in P. falciparum. Overall, we confirm that PfGyrA is an apicoplast enzyme in the malaria parasite, essential for blood-stage parasites, and a possible target of ciprofloxacin but perhaps not the only target.


Asunto(s)
Antimaláricos , Apicoplastos , Apicoplastos/genética , Girasa de ADN/genética , Humanos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
11.
Methods Mol Biol ; 2344: 139-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34115357

RESUMEN

The protein array is a powerful platform to study humoral responses to infectious agents using small sample volumes [<3 µL]. Its success can be largely attributed to the development of new strategies for high-throughput cloning and expression, and improved manufacturing techniques for the construction of arrays. Here, we describe a method to hybridize protein arrays with malaria patients' sera in order to identify seroreactive antigens, some of which may have a high potential of conferring protection from severe forms of malaria.


Asunto(s)
Malaria/diagnóstico , Análisis por Matrices de Proteínas , Proteínas Protozoarias/análisis , Pruebas Serológicas , Biomarcadores/análisis , Humanos , Malaria/inmunología , Proteínas Protozoarias/inmunología
12.
Malar J ; 20(1): 221, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006297

RESUMEN

BACKGROUND: Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. METHODS: Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. RESULTS: Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. CONCLUSIONS: Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.


Asunto(s)
Anopheles/parasitología , Mosquitos Vectores/parasitología , Plasmodium vivax/fisiología , Animales , Femenino , India , Plasmodium vivax/crecimiento & desarrollo , Esporozoítos/crecimiento & desarrollo , Esporozoítos/fisiología
13.
J Med Chem ; 64(9): 6085-6136, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876936

RESUMEN

Dihydroorotate dehydrogenase (DHODH) has been clinically validated as a target for the development of new antimalarials. Experience with clinical candidate triazolopyrimidine DSM265 (1) suggested that DHODH inhibitors have great potential for use in prophylaxis, which represents an unmet need in the malaria drug discovery portfolio for endemic countries, particularly in areas of high transmission in Africa. We describe a structure-based computationally driven lead optimization program of a pyrrole-based series of DHODH inhibitors, leading to the discovery of two candidates for potential advancement to preclinical development. These compounds have improved physicochemical properties over prior series frontrunners and they show no time-dependent CYP inhibition, characteristic of earlier compounds. Frontrunners have potent antimalarial activity in vitro against blood and liver schizont stages and show good efficacy in Plasmodium falciparum SCID mouse models. They are equally active against P. falciparum and Plasmodium vivax field isolates and are selective for Plasmodium DHODHs versus mammalian enzymes.


Asunto(s)
Antimaláricos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirroles/farmacología , Animales , Antimaláricos/química , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/química , Ratones , Plasmodium falciparum/efectos de los fármacos , Pirroles/química , Relación Estructura-Actividad
14.
Nat Commun ; 12(1): 1629, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712609

RESUMEN

The structural integrity of the host red blood cell (RBC) is crucial for propagation of Plasmodium spp. during the disease-causing blood stage of malaria infection. To assess the stability of Plasmodium vivax-infected reticulocytes, we developed a flow cytometry-based assay to measure osmotic stability within characteristically heterogeneous reticulocyte and P. vivax-infected samples. We find that erythroid osmotic stability decreases during erythropoiesis and reticulocyte maturation. Of enucleated RBCs, young reticulocytes which are preferentially infected by P. vivax, are the most osmotically stable. P. vivax infection however decreases reticulocyte stability to levels close to those of RBC disorders that cause hemolytic anemia, and to a significantly greater degree than P. falciparum destabilizes normocytes. Finally, we find that P. vivax new permeability pathways contribute to the decreased osmotic stability of infected-reticulocytes. These results reveal a vulnerability of P. vivax-infected reticulocytes that could be manipulated to allow in vitro culture and develop novel therapeutics.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Reticulocitos/metabolismo , Reticulocitos/parasitología , Anemia Hemolítica , Médula Ósea , Diferenciación Celular , Eritrocitos , Hemólisis , Humanos , Malaria
15.
Mol Microbiol ; 115(4): 574-590, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33053232

RESUMEN

Extrachromosomal (ec) DNAs are genetic elements that exist separately from the genome. Since ecDNA can carry beneficial genes, they are a powerful adaptive mechanism in cancers and many pathogens. For the first time, we report ecDNA contributing to antimalarial resistance in Plasmodium falciparum, the most virulent human malaria parasite. Using pulse field gel electrophoresis combined with PCR-based copy number analysis, we detected two ecDNA elements that differ in migration and structure. Entrapment in the electrophoresis well and low susceptibility to exonucleases revealed that the biologically relevant ecDNA element is large and complex in structure. Using deep sequencing, we show that ecDNA originates from the chromosome and expansion of an ecDNA-specific sequence may improve its segregation or expression. We speculate that ecDNA is maintained using established mechanisms due to shared characteristics with the mitochondrial genome. Implications of ecDNA discovery in this organism are wide-reaching due to the potential for new strategies to target resistance development.


Asunto(s)
Resistencia a Medicamentos/genética , Genoma de Protozoos , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Adaptación Fisiológica , Antimaláricos/farmacología , ADN Protozoario , Amplificación de Genes , Humanos , Pirimidinas/farmacología
16.
J Infect Dis ; 223(10): 1817-1821, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32941614

RESUMEN

Plasmodium vivax has 2 invasion ligand/host receptor pathways (P. vivax Duffy-binding protein/Duffy antigen receptor for chemokines [DARC] and P. vivax reticulocyte binding protein 2b/transferrin receptor [TfR1]) that are promising targets for therapeutic intervention. We optimized invasion assays with isogenic cultured reticulocytes. Using a receptor blockade approach with multiple P. vivax isolates, we found that all strains utilized both DARC and TfR1, but with significant variation in receptor usage. This suggests that P. vivax, like Plasmodium falciparum, uses alternative invasion pathways, with implications for pathogenesis and vaccine development.


Asunto(s)
Antígenos CD , Sistema del Grupo Sanguíneo Duffy , Malaria Vivax , Plasmodium vivax , Receptores de Superficie Celular , Receptores de Transferrina , Células Cultivadas , Humanos , Plasmodium vivax/patogenicidad , Reticulocitos/parasitología
17.
PLoS Pathog ; 16(5): e1008600, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453775

RESUMEN

Apicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans. We chose to explore the therapeutic potential of shipworm symbiotic bacteria as they are bona fide symbionts, are easily grown in axenic culture and have genomes rich in secondary metabolite loci [1,2]. Two strains of the shipworm symbiotic bacterium, Teredinibacter turnerae, were screened for activity against Toxoplasma gondii and one strain, T7901, exhibited activity against intracellular stages of the parasite. Bioassay-guided fractionation identified tartrolon E (trtE) as the source of the activity. TrtE has an EC50 of 3 nM against T. gondii, acts directly on the parasite itself and kills the parasites after two hours of treatment. TrtE exhibits nanomolar to picomolar level activity against Cryptosporidium, Plasmodium, Babesia, Theileria, and Sarcocystis; parasites representing all branches of the apicomplexan phylogenetic tree. The compound also proved effective against Cryptosporidium parvum infection in neonatal mice, indicating that trtE may be a potential lead compound for preclinical development. Identification of a promising new compound after such limited screening strongly encourages further mining of invertebrate symbionts for new anti-parasitic therapeutics.


Asunto(s)
Antiprotozoarios , Apicomplexa/crecimiento & desarrollo , Bivalvos/microbiología , Gammaproteobacteria/metabolismo , Simbiosis , Animales , Antiprotozoarios/metabolismo , Antiprotozoarios/farmacología , Ratones , Infecciones por Protozoos/tratamiento farmacológico
18.
J Med Chem ; 63(9): 4929-4956, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32248693

RESUMEN

Malaria puts at risk nearly half the world's population and causes high mortality in sub-Saharan Africa, while drug resistance threatens current therapies. The pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH) is a validated target for malaria treatment based on our finding that triazolopyrimidine DSM265 (1) showed efficacy in clinical studies. Herein, we describe optimization of a pyrrole-based series identified using a target-based DHODH screen. Compounds with nanomolar potency versus Plasmodium DHODH and Plasmodium parasites were identified with good pharmacological properties. X-ray studies showed that the pyrroles bind an alternative enzyme conformation from 1 leading to improved species selectivity versus mammalian enzymes and equivalent activity on Plasmodium falciparum and Plasmodium vivax DHODH. The best lead DSM502 (37) showed in vivo efficacy at similar levels of blood exposure to 1, although metabolic stability was reduced. Overall, the pyrrole-based DHODH inhibitors provide an attractive alternative scaffold for the development of new antimalarial compounds.


Asunto(s)
Antimaláricos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirroles/uso terapéutico , Animales , Antimaláricos/síntesis química , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Línea Celular Tumoral , Cristalografía por Rayos X , Dihidroorotato Deshidrogenasa , Perros , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacocinética , Femenino , Humanos , Masculino , Ratones SCID , Microsomas Hepáticos/metabolismo , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/enzimología , Unión Proteica , Pirroles/síntesis química , Pirroles/metabolismo , Pirroles/farmacocinética , Ratas , Relación Estructura-Actividad
19.
Artículo en Inglés | MEDLINE | ID: mdl-31332065

RESUMEN

Artemisinin-based combination therapy (ACT) has been used to treat uncomplicated Plasmodium falciparum infections in India since 2004. Since 2008, a decrease in artemisinin effectiveness has been seen throughout the Greater Mekong Subregion. The geographic proximity and ecological similarities of northeastern India to Southeast Asia may differentially affect the long-term management and sustainability of ACT in India. In order to collect baseline data on variations in ACT sensitivity in Indian parasites, 12 P. falciparum isolates from northeast India and 10 isolates from southwest India were studied in vitro Ring-stage survival assay (RSA) showed reduced sensitivity to dihydroartemisinin in 50% of the samples collected in northeast India in 2014 and 2015. Two of the 10 assayed samples from the southwest region of India from as far back as 2012 also showed decreased sensitivity to artemisinin. In both these regions, kelch gene sequences were not predictive of reduced artemisinin sensitivity, as measured by RSA. The present data justify future investments in integrated approaches involving clinical follow-up studies, in vitro survival assays, and molecular markers for tracking potential changes in the effectiveness of artemisinin against P. falciparum throughout India.


Asunto(s)
Artemisininas/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/epidemiología , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Secuencia de Bases , Resistencia a Medicamentos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Geografía , Humanos , India/epidemiología , Secuencia Kelch , Estadios del Ciclo de Vida/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mutación , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo
20.
mBio ; 10(2)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040236

RESUMEN

The clinical presentation of severe Plasmodium falciparum malaria differs between children and adults, but the mechanistic basis for this remains unclear. Contributing factors to disease severity include total parasite biomass and the diverse cytoadhesive properties mediated by the polymorphic var gene parasite ligand family displayed on infected erythrocytes. To explore these factors, we performed a multicohort analysis of the contribution of var expression and parasite biomass to severe malaria in two previously published pediatric cohorts in Tanzania and Malawi and an adult cohort in India. Machine learning analysis revealed independent and complementary roles for var adhesion types and parasite biomass in adult and pediatric severe malaria and showed that similar var profiles, including upregulation of group A and DC8 var, predict severe malaria in adults and children. Among adults, patients with multiorgan complications presented infections with significantly higher parasite biomass without significant differences in var adhesion types. Conversely, pediatric patients with specific complications showed distinct var signatures. Cerebral malaria patients showed broadly increased expression of var genes, in particular group A and DC8 var, while children with severe malaria anemia were classified based on high transcription of DC8 var only. This study represents the first large multisite meta-analysis of var expression, and it demonstrates the presence of common var profiles in severe malaria patients of different ages across distant geographical sites, as well as syndrome-specific disease signatures. The complex associations between parasite biomass, var adhesion type, and clinical presentation revealed here represent the most comprehensive picture so far of the relationship between cytoadhesion, parasite load, and clinical syndrome.IMPORTANCEP. falciparum malaria can cause multiple disease complications that differ by patient age. Previous studies have attempted to address the roles of parasite adhesion and biomass in disease severity; however, these studies have been limited to single geographical sites, and there is limited understanding of how parasite adhesion and biomass interact to influence disease manifestations. In this meta-analysis, we compared parasite disease determinants in African children and Indian adults. This study demonstrates that parasite biomass and specific subsets of var genes are independently associated with detrimental outcomes in both childhood and adult malaria. We also explored how parasite var adhesion types and biomass play different roles in the development of specific severe malaria pathologies, including childhood cerebral malaria and multiorgan complications in adults. This work represents the largest study to date of the role of both var adhesion types and biomass in severe malaria.


Asunto(s)
Variación Genética , Genotipo , Malaria Falciparum/patología , Malaria Falciparum/parasitología , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , India , Lactante , Aprendizaje Automático , Malaui , Masculino , Carga de Parásitos , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...