Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 34(2): 108611, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440145

RESUMEN

Intracellular vesicle fusion is catalyzed by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Vesicle-anchored v-SNAREs pair with target membrane-associated t-SNAREs to form trans-SNARE complexes, releasing free energy to drive membrane fusion. However, trans-SNARE complexes are unable to assemble efficiently unless activated by Sec1/Munc18 (SM) proteins. Here, we demonstrate that SNAREs become fully active when the v-SNARE is split into two fragments, eliminating the requirement of SM protein activation. Mechanistically, v-SNARE splitting accelerates the zippering of trans-SNARE complexes, mimicking the stimulatory function of SM proteins. Thus, SNAREs possess the full potential to drive efficient membrane fusion but are suppressed by a conformational constraint. This constraint is removed by SM protein activation or v-SNARE splitting. We suggest that ancestral SNAREs originally evolved to be fully active in the absence of SM proteins. Later, a conformational constraint coevolved with SM proteins to achieve the vesicle fusion specificity demanded by complex endomembrane systems.


Asunto(s)
Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Comunicación Celular , Humanos , Fusión de Membrana/fisiología
2.
Cell Rep ; 29(13): 4583-4592.e3, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875562

RESUMEN

Intracellular vesicle fusion is mediated by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. It is generally accepted that membrane fusion occurs when the vesicle and target membranes are brought into close proximity by SNAREs and SM proteins. In this work, we demonstrate that, for fusion to occur, membrane bilayers must be destabilized by a conserved membrane-embedded motif located at the juxtamembrane region of the vesicle-anchored v-SNARE. Comprised of basic and hydrophobic residues, the juxtamembrane motif perturbs the lipid bilayer structure and promotes SNARE-SM-mediated membrane fusion. The juxtamembrane motif can be functionally substituted with an unrelated membrane-disrupting peptide in the membrane fusion reaction. These findings establish the juxtamembrane motif of the v-SNARE as a membrane-destabilizing peptide. Requirement of membrane-destabilizing peptides is likely a common feature of biological membrane fusion.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Fusión de Membrana , Proteínas Munc18 , Proteínas SNARE/química , Vesículas Transportadoras/química , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Membrana Celular/metabolismo , Drosophila melanogaster , Humanos , Membrana Dobles de Lípidos/metabolismo , Ratones , Modelos Moleculares , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Proteínas SNARE/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteína 25 Asociada a Sinaptosomas/química , Proteína 25 Asociada a Sinaptosomas/metabolismo , Vesículas Transportadoras/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Xenopus laevis
3.
J Neurochem ; 151(1): 38-49, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31274190

RESUMEN

Neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are considered incurable and significantly reduce the quality of life of the patients. A variety of drugs that modulate neurotransmitter levels have been used for the treatment of the neurodegenerative diseases but with limited efficacy. In this work, an amperometric complementary metal-oxide-semiconductor (CMOS) chip is used for high-throughput drug testing with respect to the modulation of transmitter release from single vesicles using chromaffin cells prepared from bovine adrenal glands as a model system. Single chromaffin cell amperometry was performed with high efficiency on the surface-modified CMOS chip and follow-up whole-cell patch-clamp experiments were performed to determine the readily releasable pool sizes. We show that the antidepressant drug bupropion significantly increases the amount of neurotransmitter released in individual quantal release events. The antidepressant drug citalopram accelerates rapid neurotransmitter release following stimulation and follow-up patch-clamp experiments reveal that this is because of the increase in the pool of readily releasable vesicles. These results shed light on the mechanisms by which bupropion and citalopram may be potentially effective in the treatment of neurodegenerative diseases. These results demonstrate that the CMOS amperometry chip technology is an excellent tool for drug testing to determine the specific mechanisms by which they modulate neurotransmitter release.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Células Cromafines/efectos de los fármacos , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Neurotransmisores/metabolismo , Animales , Bupropión/farmacología , Bovinos , Células Cultivadas , Citalopram/farmacología , Semiconductores
4.
Pflugers Arch ; 470(1): 113-123, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28889250

RESUMEN

Amperometry is a powerful method to record quantal release events from chromaffin cells and is widely used to assess how specific drugs modify quantal size, kinetics of release, and early fusion pore properties. Surface-modified CMOS-based electrochemical sensor arrays allow simultaneous recordings from multiple cells. A reliable, low-cost technique is presented here for efficient targeting of single cells specifically to the electrode sites. An SU-8 microwell structure is patterned on the chip surface to provide insulation for the circuitry as well as cell trapping at the electrode sites. A shifted electrode design is also incorporated to increase the flexibility of the dimension and shape of the microwells. The sensitivity of the electrodes is validated by a dopamine injection experiment. Microwells with dimensions slightly larger than the cells to be trapped ensure excellent single-cell targeting efficiency, increasing the reliability and efficiency for on-chip single-cell amperometry measurements. The surface-modified device was validated with parallel recordings of live chromaffin cells trapped in the microwells. Rapid amperometric spikes with no diffusional broadening were observed, indicating that the trapped and recorded cells were in very close contact with the electrodes. The live cell recording confirms in a single experiment that spike parameters vary significantly from cell to cell but the large number of cells recorded simultaneously provides the statistical significance.


Asunto(s)
Células Cromafines/fisiología , Técnicas Electroquímicas/métodos , Procedimientos Analíticos en Microchip/métodos , Animales , Técnicas Electroquímicas/instrumentación , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Dispositivos Laboratorio en un Chip
5.
Proc Natl Acad Sci U S A ; 113(16): 4362-7, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27044075

RESUMEN

Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos/fisiología , Sinaptotagminas/metabolismo , Animales , Transporte Biológico Activo/fisiología , Calcio/química , Membrana Celular/química , Retículo Endoplásmico/química , Sinaptotagminas/química
6.
Nat Commun ; 6: 8852, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26572858

RESUMEN

The fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane requires two classes of molecules-SNAP receptor (SNARE) and Sec1/Munc18 (SM) protein. Reconstitution studies suggest that the SM protein Munc18-1 promotes the zippering of trans-SNARE complexes and accelerates the kinetics of SNARE-dependent membrane fusion. However, the physiological role of this trans-SNARE-regulating function in synaptic exocytosis remains to be established. Here we first demonstrate that two mutations in the vesicle-anchored v-SNARE selectively impair the ability of Munc18-1 to promote trans-SNARE zippering, whereas other known Munc18-1/SNARE-binding modes are unaffected. In cultured neurons, these v-SNARE mutations strongly inhibit spontaneous as well as evoked neurotransmitter release, providing genetic evidence for the trans-SNARE-regulating function of Munc18-1 in synaptic exocytosis. Finally, we show that the trans-SNARE-regulating function of Munc18-1 is compromised by a mutation associated with Ohtahara Syndrome, a severe form of epilepsy.


Asunto(s)
Exocitosis/genética , Proteínas Munc18/genética , Neuronas/metabolismo , Transmisión Sináptica/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Animales , Sitios de Unión , Corteza Cerebral/citología , Epilepsia/genética , Immunoblotting , Liposomas/metabolismo , Fusión de Membrana , Ratones , Proteínas Munc18/metabolismo , Mutación , Técnicas de Placa-Clamp , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
7.
J Am Chem Soc ; 137(40): 12873-83, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26431309

RESUMEN

Intracellular vesicle fusion is mediated by SNAREs and Sec1/Munc18 (SM) proteins. Despite intensive efforts, the SNARE-SM mediated vesicle fusion reaction has not been faithfully reconstituted in biochemical assays. Here, we present an unexpected discovery that macromolecular crowding is required for reconstituting the vesicle fusion reaction in vitro. Macromolecular crowding is known to profoundly influence the kinetic and thermodynamic behaviors of macromolecules, but its role in membrane transport processes such as vesicle fusion remains unexplored. We introduced macromolecular crowding agents into reconstituted fusion reactions to mimic the crowded cellular environment. In this crowded assay, SNAREs and SM proteins acted in concert to drive efficient membrane fusion. In uncrowded assays, by contrast, SM proteins failed to associate with the SNAREs and the fusion rate decreased more than 30-fold, close to undetectable levels. The activities of SM proteins were strictly specific to their cognate SNARE isoforms and sensitive to biologically relevant mutations, further supporting that the crowded fusion assay accurately recapitulates the vesicle fusion reaction. Using this crowded fusion assay, we also showed that the SNARE-SM mediated fusion reaction can be modulated by two additional factors: NSF and α-SNAP. These findings suggest that the vesicle fusion machinery likely has been evolutionarily selected to function optimally in the crowded milieu of the cell. Accordingly, macromolecular crowding should constitute an integral element of any reconstituted fusion assay.


Asunto(s)
Sustancias Macromoleculares/química , Animales , Animales Recién Nacidos , Ratones , Proteínas Munc18/química , Termodinámica
8.
J Biol Chem ; 289(37): 25571-80, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25063806

RESUMEN

Tomosyn negatively regulates SNARE-dependent exocytic pathways including insulin secretion, GLUT4 exocytosis, and neurotransmitter release. The molecular mechanism of tomosyn, however, has not been fully elucidated. Here, we reconstituted SNARE-dependent fusion reactions in vitro to recapitulate the tomosyn-regulated exocytic pathways. We then expressed and purified active full-length tomosyn and examined how it regulates the reconstituted SNARE-dependent fusion reactions. Using these defined fusion assays, we demonstrated that tomosyn negatively regulates SNARE-mediated membrane fusion by inhibiting the assembly of the ternary SNARE complex. Tomosyn recognizes the t-SNARE complex and prevents its pairing with the v-SNARE, therefore arresting the fusion reaction at a pre-docking stage. The inhibitory function of tomosyn is mediated by its C-terminal domain (CTD) that contains an R-SNARE-like motif, confirming previous studies carried out using truncated tomosyn fragments. Interestingly, the N-terminal domain (NTD) of tomosyn is critical (but not sufficient) to the binding of tomosyn to the syntaxin monomer, indicating that full-length tomosyn possesses unique features not found in the widely studied CTD fragment. Finally, we showed that the inhibitory function of tomosyn is dominant over the stimulatory activity of the Sec1/Munc18 protein in fusion. We suggest that tomosyn uses its CTD to arrest SNARE-dependent fusion reactions, whereas its NTD is required for the recruitment of tomosyn to vesicle fusion sites through syntaxin interaction.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis/genética , Fusión de Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas R-SNARE/metabolismo , Animales , Membrana Celular/química , Etilmaleimida/química , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas del Tejido Nervioso/química , Células PC12 , Mapas de Interacción de Proteínas/genética , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/química , Ratas , Proteínas SNARE/genética , Transmisión Sináptica/genética
9.
Proc Natl Acad Sci U S A ; 110(35): E3271-80, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23918365

RESUMEN

Sec1/Munc18 (SM) family proteins are essential for every vesicle fusion pathway. The best-characterized SM protein is the synaptic factor Munc18-1, but it remains unclear whether its functions represent conserved mechanisms of SM proteins or specialized activities in neurotransmitter release. To address this question, we dissected Munc18c, a functionally distinct SM protein involved in nonsynaptic exocytic pathways. We discovered that Munc18c binds to the trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and strongly accelerates the fusion rate. Further analysis suggests that Munc18c recognizes both vesicle-rooted SNARE and target membrane-associated SNAREs, and promotes trans-SNARE zippering at the postdocking stage of the fusion reaction. The stimulation of fusion by Munc18c is specific to its cognate SNARE isoforms. Because Munc18-1 regulates fusion in a similar manner, we conclude that one conserved function of SM proteins is to bind their cognate trans-SNARE complexes and accelerate fusion kinetics. Munc18c also binds syntaxin-4 monomer but does not block target membrane-associated SNARE assembly, in agreement with our observation that six- to eightfold increases in Munc18c expression do not inhibit insulin-stimulated glucose uptake in adipocytes. Thus, the inhibitory "closed" syntaxin binding mode demonstrated for Munc18-1 is not conserved in Munc18c. Unexpectedly, we found that Munc18c recognizes the N-terminal region of the vesicle-rooted SNARE, whereas Munc18-1 requires the C-terminal sequences, suggesting that the architecture of the SNARE/SM complex likely differs across fusion pathways. Together, these comparative studies of two distinct SM proteins reveal conserved as well as divergent mechanisms of SM family proteins in intracellular vesicle fusion.


Asunto(s)
Proteínas Munc18/química , Exocitosis , Cinética , Fusión de Membrana , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas SNARE/metabolismo
10.
J Biol Chem ; 288(26): 18885-93, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23665562

RESUMEN

The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.


Asunto(s)
Membrana Celular/metabolismo , Fusión de Membrana/fisiología , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insectos , Membrana Dobles de Lípidos/química , Liposomas/metabolismo , Ratones , Proteínas Munc18/metabolismo , Unión Proteica , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes/metabolismo
11.
Mol Biol Cell ; 24(8): 1176-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23427263

RESUMEN

The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca(2+). The stimulatory activity of Doc2b requires intact Ca(2+)-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca(2+)- and membrane bending-dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca(2+) sensors may possess divergent mechanisms in regulating vesicle fusion.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/química , Membrana Celular/química , Exocitosis , Transportador de Glucosa de Tipo 4/química , Proteínas del Tejido Nervioso/química , Proteínas SNARE/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Estructuras de la Membrana Celular/química , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Liposomas/ultraestructura , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Ratas
12.
BMC Syst Biol ; 6: 19, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22423977

RESUMEN

BACKGROUND: Network motifs, recurring subnetwork patterns, provide significant insight into the biological networks which are believed to govern cellular processes. METHODS: We present a comparative network motif experimental approach, which helps to explain complex biological phenomena and increases the understanding of biological functions at the molecular level by exploring evolutionary design principles of network motifs. RESULTS: Using this framework to analyze the SM (Sec1/Munc18)-SNARE (N-ethylmaleimide-sensitive factor activating protein receptor) system in exocytic membrane fusion in yeast and neurons, we find that the SM-SNARE network motifs of yeast and neurons show distinct dynamical behaviors. We identify the closed binding mode of neuronal SM (Munc18-1) and SNARE (syntaxin-1) as the key factor leading to mechanistic divergence of membrane fusion systems in yeast and neurons. We also predict that it underlies the conflicting observations in SM overexpression experiments. Furthermore, hypothesis-driven lipid mixing assays validated the prediction. CONCLUSION: Therefore this study provides a new method to solve the discrepancies and to generalize the functional role of SM proteins.


Asunto(s)
Exocitosis , Modelos Biológicos , Proteínas Munc18/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Sinapsis/metabolismo
13.
Mol Biol Cell ; 22(14): 2612-9, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21633111

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form a four-helix coiled-coil bundle that juxtaposes two bilayers and drives a basal level of membrane fusion. The Sec1/Munc18 (SM) protein binds to its cognate SNARE bundle and accelerates the basal fusion reaction. The question of how the topological arrangement of the SNARE helices affects the reactivity of the fusion proteins remains unanswered. Here we address the problem for the first time in a reconstituted system containing both SNAREs and SM proteins. We find that to be fusogenic a SNARE topology must support both basal fusion and SM stimulation. Certain topological combinations of exocytic SNAREs result in basal fusion but cannot support SM stimulation, whereas other topologies support SM stimulation without inducing basal fusion. It is striking that of all the possible topological combinations of exocytic SNARE helices, only one induces efficient fusion. Our results suggest that the intracellular membrane fusion complex is designed to fuse bilayers according to one genetically programmed topology.


Asunto(s)
Membrana Dobles de Lípidos/química , Fusión de Membrana/fisiología , Complejos Multiproteicos/química , Proteínas Munc18/química , Proteínas Qa-SNARE/química , Saccharomyces cerevisiae/fisiología , Levaduras/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Expresión Génica , Liposomas/metabolismo , Conformación Molecular , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Proteínas Munc18/metabolismo , Proteínas Munc18/fisiología , Estructura Secundaria de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/fisiología , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Levaduras/química , Levaduras/genética
14.
Proc Natl Acad Sci U S A ; 107(52): 22399-406, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21139055

RESUMEN

Intracellular membrane fusion is mediated by the concerted action of N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and Sec1/Munc18 (SM) proteins. During fusion, SM proteins bind the N-terminal peptide (N-peptide) motif of the SNARE subunit syntaxin, but the function of this interaction is unknown. Here, using FRET-based biochemical reconstitution and Caenorhabditis elegans genetics, we show that the N-peptide of syntaxin-1 recruits the SM protein Munc18-1/nSec1 to the SNARE bundle, facilitating their assembly into a fusion-competent complex. The recruitment is achieved through physical tethering rather than allosteric activation of Munc18-1. Consistent with the recruitment role, the N-peptide is not spatially constrained along syntaxin-1, and it is functional when translocated to another SNARE subunit SNAP-25 or even when simply anchored in the target membrane. The N-peptide function is restricted to an early initiation stage of the fusion reaction. After association, Munc18-1 and the SNARE bundle together drive membrane merging without further involving the N-peptide. Thus, the syntaxin N-peptide is an initiation factor for the assembly of the SNARE-SM membrane fusion complex.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Fusión de Membrana , Fosfoproteínas/metabolismo , Proteínas SNARE/metabolismo , Sintaxina 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Microscopía Confocal , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutación , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas SNARE/química , Proteínas SNARE/genética , Sintaxina 1/química , Sintaxina 1/genética , Factores de Tiempo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
15.
J Cell Biol ; 190(1): 55-63, 2010 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-20603329

RESUMEN

Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved H(abc) domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the H(abc) domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin H(abc) domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Q(bc) configuration. We found that neither the linker nor the Q(bc) configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas Munc18/metabolismo , Péptidos/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Sintaxina 1/metabolismo , Secuencias de Aminoácidos , Animales , Ratones , Proteínas Munc18/genética , Mutación , Péptidos/genética , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Proteína 25 Asociada a Sinaptosomas/genética , Sintaxina 1/genética
16.
PLoS One ; 3(5): e2087, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18461140

RESUMEN

BACKGROUND: Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-à-vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: Here, we demonstrate an interplay among three iron regulated Mycobacterium tuberculosis (M.tb) proteins, namely, Rv1348 (IrtA), Rv1349 (IrtB) and Rv2895c in export and import of M.tb siderophores across the membrane and the consequent iron uptake. IrtA, interestingly, has a fused N-terminal substrate binding domain (SBD), representing an atypical subset of ABC transporters, unlike IrtB that harbors only the permease and ATPase domain. SBD selectively binds to non-ferrated siderophores whereas Rv2895c exhibits relatively higher affinity towards ferrated siderophores. An interaction between the permease domain of IrtB and Rv2895c is evident from GST pull-down assay. In vitro liposome reconstitution experiments further demonstrate that IrtA is indeed a siderophore exporter and the two-component IrtB-Rv2895c system is an importer of ferrated siderophores. Knockout of msmeg_6554, the irtA homologue in Mycobacterium smegmatis, resulted in an impaired M.tb siderophore export that is restored upon complementation with M.tb irtA. CONCLUSION: Our data suggest the interplay of three proteins, namely IrtA, IrtB and Rv2895c in synergizing the balance of siderophores and thus iron inside the mycobacterial cell.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Hierro/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Genoma Bacteriano , Macrófagos/microbiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Operón , Reacción en Cadena de la Polimerasa , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...