Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Hypertension ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747164

RESUMEN

BACKGROUND: Inter-individual variation in blood pressure (BP) arises in part from sequence variants within enhancers modulating the expression of causal genes. We propose that these genes, active in tissues relevant to BP physiology, can be identified from tissue-level epigenomic data and genotypes of BP-phenotyped individuals. METHODS: We used chromatin accessibility data from the heart, adrenal, kidney, and artery to identify cis-regulatory elements (CREs) in these tissues and estimate the impact of common human single-nucleotide variants within these CREs on gene expression, using machine learning methods. To identify causal genes, we performed a gene-wise association test. We conducted analyses in 2 separate large-scale cohorts: 77 822 individuals from the Genetic Epidemiology Research on Adult Health and Aging and 315 270 individuals from the UK Biobank. RESULTS: We identified 309, 259, 331, and 367 genes (false discovery rate <0.05) for diastolic BP and 191, 184, 204, and 204 genes for systolic BP in the artery, kidney, heart, and adrenal, respectively, in Genetic Epidemiology Research on Adult Health and Aging; 50% to 70% of these genes were replicated in the UK Biobank, significantly higher than the 12% to 15% expected by chance (P<0.0001). These results enabled tissue expression prediction of these 988 to 2875 putative BP genes in individuals of both cohorts to construct an expression polygenic score. This score explained ≈27% of the reported single-nucleotide variant heritability, substantially higher than expected from prior studies. CONCLUSIONS: Our work demonstrates the power of tissue-restricted comprehensive CRE analysis, followed by CRE-based expression prediction, for understanding BP regulation in relevant tissues and provides dual-modality supporting evidence, CRE and expression, for the causality genes.

2.
PLoS Genet ; 19(11): e1011030, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948459

RESUMEN

Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.


Asunto(s)
Elementos de Facilitación Genéticos , Tracto Gastrointestinal , Proteínas Proto-Oncogénicas c-ret , Haplotipos , Humanos , Proteínas Proto-Oncogénicas c-ret/genética , Neuroblastoma , Línea Celular Tumoral , Enfermedad de Hirschsprung/genética , Feto , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Sistema Nervioso Entérico/embriología , Análisis de Expresión Génica de una Sola Célula , Regulación del Desarrollo de la Expresión Génica
3.
Cell Rep ; 42(11): 113351, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37910504

RESUMEN

Genome-wide association studies (GWASs) have identified numerous variants associated with polygenic traits and diseases. However, with few exceptions, a mechanistic understanding of which variants affect which genes in which tissues to modulate trait variation is lacking. Here, we present genomic analyses to explain trait heritability of blood pressure (BP) through the genetics of transcriptional regulation using GWASs, multiomics data from different tissues, and machine learning approaches. Approximately 500,000 predicted regulatory variants across four tissues explain 33.4% of variant heritability: 2.5%, 5.3%, 7.7%, and 11.8% for kidney-, adrenal-, heart-, and artery-specific variants, respectively. Variation in the enhancers involved shows greater tissue specificity than in the genes they regulate, suggesting that gene regulatory networks perturbed by enhancer variants in a tissue relevant to a phenotype are the major source of interindividual variation in BP. Thus, our study provides an approach to scan human tissue and cell types for their physiological contribution to any trait.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Presión Sanguínea/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Variación Genética
4.
Front Aging Neurosci ; 15: 1064178, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967821

RESUMEN

Introduction: Alzheimer's Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered. Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice. Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.

5.
Front Vet Sci ; 9: 885317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213408

RESUMEN

Etorphine is widely used in zoological medicine for the immobilization of large herbivores. All reported immobilization protocols for kulans use etorphine as the primary immobilizing agent. However, etorphine can trigger severe side effects and is highly toxic for humans, its availability is occasionally limited for use in wildlife medicine. Therefore, two different alpha-2 agonist-based protocols for the general anesthesia of kulans were investigated and compared with the standard etorphine immobilization. In total, 21 immobilizations were performed within the scope of routine husbandry management at the Serengeti-Park Hodenhagen. Kulans were darted using a ketamine-medetomidine-midazolam-butorphanol (KMMB) protocol (n = 8, treatment group (TG) 1), a tiletamine-zolazepam-medetomidine-butorphanol (TZMB) protocol (n = 7, treatment group (TG) 2), or an etorphine-acepromazine-detomidine-butorphanol (EADB) protocol (n = 6, control group). Vital parameters included heart rate, respiratory rate, arterial blood pressure (invasive), end tidal CO2 (etCO2), electromyography and core body temperature, which were all assessed every 10 min. For blood gas analysis, arterial samples were collected 15, 30, 45 and 60 min after induction. Subjective measures of quality and efficacy included quality of induction, immobilization, and recovery. Time to recumbency was longer for TG 1 (9.00 ± 1.67 min) and TG 2 (10.43 ± 1.79 min) compared to the induction times in the control group (5.33 ± 1.93 min). Treatment group protocols resulted in excellent muscle relaxation, normoxemia and normocapnia. Lower pulse rates combined with systolic arterial hypertension were detected in the alpha-2 agonist-based protocols. However, only in TZMB-immobilized kulans, sustained severe systolic arterial hypertension was observed, with significantly higher values than in the TG 1 and the normotensive control group. At 60 min following induction, medetomidine and detomidine were antagonized with atipamezole IM (5 mg/mg medetomidine or 2 mg/mg detomidine), etorphine and butorphanol with naltrexone IV (2 mg/mg butorphanol or 50 mg/mg etorphine), and midazolam and zolazepam with flumazenil IV (0.3 mg per animal). All three combinations provided smooth and rapid recoveries. To conclude, the investigated treatment protocols (KMMB and TZMB) provided a safe and efficient general anesthesia in kulans with significantly better muscle relaxation, higher respiration rates and improved arterial oxygenation compared with the immobilizations of the control group. However, the control group (EADB) showed faster recoveries. Therefore, EADB is recommended for ultra-short immobilizations (e.g., microchipping and collaring), especially with free-ranging kulans where individual recovery is uncertain, whereas the investigated treatment protocols are recommended for prolonged medical procedures on captive kulans.

6.
PLoS One ; 17(6): e0268811, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35671269

RESUMEN

Temperate zone ungulates like red deer (Cervus elaphus) show pronounced seasonal acclimatisation. Hypometabolism during winter is associated with cardiovascular changes, including a reduction in heart rate (fH) and temporal peripheral vasoconstriction. How anaesthesia with vasoactive substances such as medetomidine affect the seasonally acclimatised cardiovascular system is not yet known. We anaesthetised eleven healthy female red deer with medetomidine (0.1 mg/kg) and tiletamine/zolazepam (3 mg/kg) twice in winter (ad libitum and restricted feed) and in summer (ad libitum and restricted feed), with a two-week washout-period in-between, to test for the effect of season, food availability and supplementation with omega-3 or omega-6 polyunsaturated fatty acid (PUFA) on fH and arterial blood pressure (ABP) during anaesthesia. Six animals received pellets enriched with omega-6 fatty acids (FA), and five animals with omega-3 FA. Anaesthesia significantly decreased fH in summer but not in winter and ABP was lower in winter (p < 0.05). The combination of omega-6 FA enriched pellets and food restriction resulted in a lower fH and higher ABP during anaesthesia with more pronounced changes in winter (p < 0.001). Our results demonstrate that season, food availability and type of PUFA supplementation in red deer affect the cardiovascular system during anaesthesia.


Asunto(s)
Ciervos , Zolazepam , Animales , Presión Sanguínea , Ciervos/fisiología , Dieta , Femenino , Frecuencia Cardíaca , Medetomidina/farmacología , Estaciones del Año , Tiletamina/farmacología , Zolazepam/farmacología
7.
PLoS One ; 17(3): e0264391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239687

RESUMEN

Across Southeast Asia and China, more than 17000 Asian bears are kept under suboptimal conditions and farmed for their bile to meet the consumer demand for traditional medicine products. Years of unsterile and repetitive bile extraction contribute to the development of chronic sterile or bacterial cholecystitis, a pathology commonly diagnosed in formerly bile-farmed bears. In both human and veterinary medicine, the diagnostic value of the macroscopic bile examination for assessing gallbladder disease is unclear. The objective of this study is to identify the role of gallbladder bile color, viscosity, and turbidity, while comparing them with established markers of cholecystitis. Moreover, it aims to define the optimal duration of oral antibiotic treatment for chronic bacterial cholecystitis in bears associated with bile farming. Thirty-nine adult, formerly bile-farmed Asiatic black bears (Ursus thibetanus) were examined under anesthesia and underwent percutaneous ultrasound guided cholecystocentesis. A total of 59 bile samples were collected with 20 animals sampled twice to evaluate the therapeutic success. All bile aspirates were assessed macroscopically and microscopically followed by submission for bacterial culture and antimicrobial sensitivity. In the majority of bears, samples with cytological evidence of bactibilia lacked inflammatory cells and did not always correlate with positive bacterial cultures. The most common bacterial isolates were Enterococcus spp, Streptococcus spp and Escherichia coli. Based on our findings, the optimal duration of antibiotic treatment for chronic bacterial cholecystitis is 30 days. Moreover, unlike Gamma-glutamyl Transferase (GGT) and gallbladder wall thickness, the organoleptic properties of bile were found to be reliable markers of chronic gallbladder inflammation with color and turbidity indicating cholestasis. The current study highlights the importance of cholecystocentesis for the management of gallbladder disease and provides initial results on the possible diagnostic value of macroscopic bile examination.


Asunto(s)
Colecistitis , Enfermedades de la Vesícula Biliar , Ursidae , Animales , Antibacterianos/uso terapéutico , Bilis/microbiología , Colecistitis/diagnóstico , Colecistitis/tratamiento farmacológico , Colecistitis/veterinaria , Enfermedades de la Vesícula Biliar/veterinaria
8.
J Wildl Dis ; 58(1): 188-193, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724568

RESUMEN

Wild animal immobilization often requires high doses of α2-adrenoceptor agonists. Despite their desired sedative and analgetic effects, well-recognized cardiovascular side effects, such as hypertension and bradycardia, remain a major concern. We compared the effect of two medetomidine doses on intra-arterial blood pressure and heart rate in 13 captive, female red deer (Cervus elaphus) immobilized during winter. Each animal was randomly assigned to receive either 80 µg/kg (group L) or 100 µg/kg (group H) medetomidine, combined with 3 mg/kg tiletamine-zolazepam administered intramuscularly. Changes in cardiovascular variables over time and differences between the groups were analyzed using linear mixed-effect models. Induction time was faster in group L compared with group H; recovery time did not differ between groups. Initially, the arterial blood pressure was higher in group H compared with group L, but differences between groups diminished during anesthesia. Moreover, the decline in arterial blood pressure in group H was more rapid. Heart rate was significantly lower in group L, but bradycardia was not observed. The higher medetomidine dose did not reduce induction time, and initial hypertension was reduced by administering the lower dose. Therefore, although the sample size was small and, thus, the significance of results might be limited, we suggest using 80 µg/kg instead of 100 µg/kg medetomidine when combined with 3 mg/kg tiletamine-zolazepam for the immobilization of female red deer.


Asunto(s)
Ciervos , Zolazepam , Anestésicos Combinados/farmacología , Anestésicos Disociativos/farmacología , Animales , Ciervos/fisiología , Femenino , Frecuencia Cardíaca , Hipnóticos y Sedantes/farmacología , Inmovilización/métodos , Inmovilización/veterinaria , Medetomidina/farmacología , Tiletamina/farmacología , Zolazepam/farmacología
9.
Neurobiol Aging ; 107: 96-108, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34416494

RESUMEN

Vascular perturbations and cerebral hypometabolism are emerging as important components of Alzheimer's disease (AD). While various in vivo imaging modalities have been designed to detect changes of cerebral perfusion and metabolism in AD patients and animal models, study results were often heterogenous with respect to imaging techniques and animal models. We therefore evaluated cerebral perfusion and glucose metabolism of two popular transgenic AD mouse strains, TgCRND8 and 5xFAD, at 7 and 12 months-of-age under identical conditions and analyzed possible molecular mechanisms underlying heterogeneous cerebrovascular phenotypes. Results revealed disparate findings in these two strains, displaying important aspects of AD progression. TgCRND8 mice showed significantly decreased cerebral blood flow and glucose metabolism with unchanged cerebral blood volume (CBV) at 12 months-of-age whereas 5xFAD mice showed unaltered glucose metabolism with significant increase in CBV at 12 months-of-age and a biphasic pattern of early hypoperfusion followed by a rebound to normal cerebral blood flow in late disease. Finally, immunoblotting assays suggested that VEGF dependent vascular tone change may restore normoperfusion and increase CBV in 5xFAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Glucosa/metabolismo , Humanos , Ratones Transgénicos
10.
Vet Rec ; 189(1): e76, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33908044

RESUMEN

BACKGROUND: Opioid-induced respiratory compromise remains a significant challenge in etorphine-immobilised wildlife. Serotonergic agonists offer a potential avenue for preventing or treating opioid-induced respiratory compromise. We therefore aimed to determine whether the selective 5-hydroxytryptamine receptor 4 (5-HT4) agonist, BIMU-8, reverses opioid-induced respiratory compromise in etorphine-immobilised goats. METHODS: Seven healthy adult goats were immobilised with etorphine, then treated with BIMU-8 or sterile water 5 minutes later in a randomised, prospective cross-over study. Cardiorespiratory variables were measured at 1-minute intervals from 4 minutes before etorphine to 15 minutes after its administration. Arterial blood gas analyses were also performed before and after etorphine administration and the respective treatments. RESULTS: Intravenous injection of BIMU-8 attenuated etorphine-induced respiratory compromise, as indicated by improvements, compared to baseline and between treatments, in respiratory rate (fR ), peripheral arterial blood oxygen saturation (SpO2 ), partial pressure of arterial oxygen (PaO2 ) and the alveolar-arterial oxygen partial pressure gradient (P(A-a)O2 ). BIMU-8 caused an increase in heart rate and a temporary decrease in arterial blood pressure. Mild movements and slight muscle spasm occurred but BIMU-8 did not reverse immobilisation. CONCLUSION: Our results indicate that BIMU-8 may be a potential drug candidate for the treatment, or prevention, of etorphine-induced respiratory compromise in immobilised ungulates.


Asunto(s)
Bencimidazoles/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Etorfina/efectos adversos , Cabras/fisiología , Inmovilización/veterinaria , Frecuencia Respiratoria/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Animales , Estudios Cruzados , Femenino , Estudios Prospectivos
11.
J Vis Exp ; (141)2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30582601

RESUMEN

This article presents methods for generating in vitro fibrin clots and analyzing the effect of beta-amyloid (Aß) protein on clot formation and structure by spectrometry and scanning electron microscopy (SEM). Aß, which forms neurotoxic amyloid aggregates in Alzheimer's disease (AD), has been shown to interact with fibrinogen. This Aß-fibrinogen interaction makes the fibrin clot structurally abnormal and resistant to fibrinolysis. Aß-induced abnormalities in fibrin clotting may also contribute to cerebrovascular aspects of the AD pathology such as microinfarcts, inflammation, as well as, cerebral amyloid angiopathy (CAA). Given the potentially critical role of neurovascular deficits in AD pathology, developing compounds which can inhibit or lessen the Aß-fibrinogen interaction has promising therapeutic value. In vitro methods by which fibrin clot formation can be easily and systematically assessed are potentially useful tools for developing therapeutic compounds. Presented here is an optimized protocol for in vitro generation of the fibrin clot, as well as analysis of the effect of Aß and Aß-fibrinogen interaction inhibitors. The clot turbidity assay is rapid, highly reproducible and can be used to test multiple conditions simultaneously, allowing for the screening of large numbers of Aß-fibrinogen inhibitors. Hit compounds from this screening can be further evaluated for their ability to ameliorate Aß-induced structural abnormalities of the fibrin clot architecture using SEM. The effectiveness of these optimized protocols is demonstrated here using TDI-2760, a recently identified Aß-fibrinogen interaction inhibitor.


Asunto(s)
Péptidos beta-Amiloides/efectos adversos , Fibrina/metabolismo , Microscopía Electrónica de Rastreo/métodos , Análisis Espectral/métodos , Fibrina/análisis , Humanos
12.
Biochemistry ; 57(8): 1399-1409, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29394041

RESUMEN

Accumulating evidence suggests that fibrinogen, a key protein in the coagulation cascade, plays an important role in circulatory dysfunction in Alzheimer's disease (AD). Previous work has shown that the interaction between fibrinogen and ß-amyloid (Aß), a hallmark pathological protein in AD, induces plasmin-resistant abnormal blood clots, delays fibrinolysis, increases inflammation, and aggravates cognitive function in mouse models of AD. Since Aß oligomers have a much stronger affinity for fibrinogen than Aß monomers, we tested whether amyloid aggregation inhibitors could block the Aß-fibrinogen interaction and found that some Aß aggregation inhibitors showed moderate inhibitory efficacy against this interaction. We then modified a hit compound so that it not only showed a strong inhibitory efficacy toward the Aß-fibrinogen interaction but also retained its potency toward the Aß42 aggregation inhibition process. Furthermore, our best hit compound, TDI-2760, modulated Aß42-induced contact system activation, a pathological condition observed in some AD patients, in addition to inhibiting the Aß-fibrinogen interaction and Aß aggregation. Thus, TDI-2760 has the potential to lessen vascular abnormalities as well as Aß aggregation-driven pathology in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Fibrinógeno/metabolismo , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Pirimidinas/química , Pirimidinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Diseño de Fármacos , Humanos , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo
13.
Hum Mol Genet ; 26(1): 192-209, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28082376

RESUMEN

Local mRNA translation in growing axons allows for rapid and precise regulation of protein expression in response to extrinsic stimuli. However, the role of local translation in mature CNS axons is unknown. Such a mechanism requires the presence of translational machinery and associated mRNAs in circuit-integrated brain axons. Here we use a combination of genetic, quantitative imaging and super-resolution microscopy approaches to show that mature axons in the mammalian brain contain ribosomes, the translational regulator FMRP and a subset of FMRP mRNA targets. This axonal translational machinery is associated with Fragile X granules (FXGs), which are restricted to axons in a stereotyped subset of brain circuits. FXGs and associated axonal translational machinery are present in hippocampus in humans as old as 57 years. This FXG-associated axonal translational machinery is present in adult rats, even when adult neurogenesis is blocked. In contrast, in mouse this machinery is only observed in juvenile hippocampal axons. This differential developmental expression was specific to the hippocampus, as both mice and rats exhibit FXGs in mature axons in the adult olfactory system. Experiments in Fmr1 null mice show that FMRP regulates axonal protein expression but is not required for axonal transport of ribosomes or its target mRNAs. Axonal translational machinery is thus a feature of adult CNS neurons. Regulation of this machinery by FMRP could support complex behaviours in humans throughout life.


Asunto(s)
Axones/patología , Encéfalo/patología , Gránulos Citoplasmáticos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , ARN Mensajero/metabolismo , Ribosomas/patología , Adulto , Animales , Axones/metabolismo , Encéfalo/metabolismo , Gránulos Citoplasmáticos/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neurogénesis/genética , Neuronas/metabolismo , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo
14.
Blood ; 128(8): 1144-51, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27389717

RESUMEN

The majority of patients with Alzheimer disease (AD) suffer from impaired cerebral circulation. Accumulating evidence suggests that fibrinogen, the main protein component of blood clots, plays an important role in this circulatory dysfunction in AD. Fibrinogen interacts with ß-amyloid (Aß), forming plasmin-resistant abnormal blood clots, and increased fibrin deposition is found in the brains of AD patients and mouse models. In this study, we investigated the biochemical and structural details of the Aß-fibrinogen interaction. We identified the central region of Aß42 as the most critical region for the interaction, which can be inhibited by specific antibodies against the central region of Aß and by naturally occurring p3 peptides, Aß17-40 and Aß17-42. X-ray crystallographic analysis revealed that Aß42 binding to fragment D of fibrinogen induced a structural change in the C-terminal region of the fibrinogen ß-chain (ß384-393). Furthermore, we identified an additional Aß-binding site within the αC region of fibrinogen. Aß binding to this αC region blocked plasmin-mediated fibrin cleavage at this site, resulting in the generation of increased levels of a plasmin-resistant fibrin degradation fragment. Overall, our study elucidates the Aß-fibrinogen interaction and clarifies the mechanism by which Aß-fibrinogen binding delays fibrinolysis by plasmin. These results may facilitate the development of effective therapeutics against the Aß-fibrinogen interaction to treat cerebrovascular abnormalities in AD.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Fibrinógeno/química , Fibrinógeno/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Productos de Degradación de Fibrina-Fibrinógeno/química , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Fibrinolisina/metabolismo , Fibrinólisis , Humanos , Ratones , Unión Proteica , Dodecil Sulfato de Sodio/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-19915727

RESUMEN

The ability of the nervous system to convert transient experiences into long-lasting structural changes at the synapse relies upon protein synthesis. It has become increasingly clear that a critical subset of this synthesis occurs within the synaptic compartment. While this process has been extensively characterized in the postsynaptic compartment, the contribution of local translation to presynaptic function remains largely unexplored. However, recent evidence highlights the potential importance of translation within the presynaptic compartment. Work in cultured neurons has shown that presynaptic translation occurs specifically at synapses undergoing long-term plasticity and may contribute to the maintenance of nascent synapses. Studies from our laboratory have demonstrated that Fragile X proteins, which regulate mRNA localization and translation, are expressed at the presynaptic apparatus. Further, mRNAs encoding presynaptic proteins traffic into axons. Here we discuss recent advances in the study of presynaptic translation as well as the challenges confronting the field. Understanding the regulation of presynaptic function by local protein synthesis promises to shed new light on activity-dependent modification of synaptic architecture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA