Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 33(3): e17229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063470

RESUMEN

Evolution of phenotypic plasticity requires genotype-environment interaction. The discovery of two large-effect loci in the vgll3 and six6 genomic regions associated with the number of years the Atlantic salmon spend feeding at sea before maturation (sea age), provides a unique opportunity to study evolutionary potential of phenotypic plasticity. Using data on 1246 Atlantic salmon caught in the River Surna in Norway, we show that variation in mean sea age among years (smolt cohorts 2013-2018) is influenced by genotype frequencies as well as interaction effects between genotype and year. Genotype-year interactions suggest that genotypes may differ in their response to environmental variation across years, implying genetic variation in phenotypic plasticity. Our results also imply that plasticity in sea age will evolve as an indirect response to selection on mean sea age due to a shared genetic basis. Furthermore, we demonstrate differences between years in the additive and dominance functional genetic effects of vgll3 and six6 on sea age, suggesting that evolutionary responses will vary across environments. Considering the importance of age at maturity for survival and reproduction, genotype-environment interactions likely play an important role in local adaptation and population demography in Atlantic salmon.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Genotipo , Reproducción/genética , Genoma , Adaptación Fisiológica , Factores de Transcripción
2.
Sci Adv ; 8(9): eabk2542, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245115

RESUMEN

Ecological regime shifts are abrupt changes in the structure and function of ecosystems that persist over time, but evidence of contemporary regime shifts are rare. Historical scale data from 52,384 individual wild Atlantic salmon caught in 180 rivers from 1989 to 2017 reveal that growth of Atlantic salmon across the Northeast Atlantic Ocean abruptly decreased following the year 2004. At the same time, the proportion of early maturing Atlantic salmon decreased. These changes occurred after a marked decrease in the extent of Arctic water in the Norwegian Sea, a subsequent warming of spring water temperature before Atlantic salmon entering the sea, and an approximately 50% reduction of zooplankton across large geographic areas of the Northeast Atlantic Ocean. A sudden decrease in growth was also observed among Atlantic mackerel in the Norwegian Sea. Our results point toward an ecosystem-scale regime shift in the Northeast Atlantic Ocean.

3.
Proc Natl Acad Sci U S A ; 115(45): 11561-11566, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30282740

RESUMEN

In polyandrous species, fathers benefit from attracting greater maternal investment toward their offspring at the expense of the offspring of other males, while mothers should usually allocate resources equally among offspring. This conflict can lead to an evolutionary arms race between the sexes, manifested through antagonistic genes whose expression in offspring depends upon the parent of origin. The arms race may involve an increase in the strength of maternally versus paternally derived alleles engaged in a "tug of war" over maternal provisioning or repeated "recognition-avoidance" coevolution where growth-enhancing paternally derived alleles evolve to escape recognition by maternal genes targeted to suppress their effect. Here, we develop predictions to distinguish between these two mechanisms when considering crosses among populations that have reached different equilibria in this intersexual arms race. We test these predictions using crosses within and among populations of Dalechampia scandens (Euphorbiaceae) that presumably have experienced different intensities of intersexual conflict, as inferred from their historical differences in mating system. In crosses where the paternal population was more outcrossed than the maternal population, hybrid seeds were larger than those normally produced in the maternal population, whereas when the maternal population was more outcrossed, hybrid seeds were smaller than normal. These results confirm the importance of mating systems in determining the intensity of intersexual conflict over maternal investment and provide strong support for a tug-of-war mechanism operating in this conflict. They also yield clear predictions for the fitness consequences of gene flow among populations with different mating histories.


Asunto(s)
Euphorbiaceae/genética , Flujo Génico , Patrón de Herencia , Semillas/genética , Quimera , Cruzamientos Genéticos , Euphorbiaceae/anatomía & histología , Aptitud Genética , Fitomejoramiento , Semillas/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA