Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1011980, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38662774

RESUMEN

Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis.


Asunto(s)
Replicación Viral , Avispas , Animales , Avispas/virología , Avispas/genética , Replicación Viral/genética , Genoma Viral , Femenino , Genes Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Polydnaviridae/genética , Virión/genética
2.
Virus Evol ; 10(1): veae022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617843

RESUMEN

Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.

3.
Toxins (Basel) ; 13(7)2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34357975

RESUMEN

Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis. Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be "metalloproteinase bombs" that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.


Asunto(s)
Metaloproteasas/metabolismo , Venenos de Avispas/genética , Animales , Femenino , Perfilación de la Expresión Génica , Interacciones Huésped-Parásitos , Larva , Mariposas Nocturnas , Proteómica , Venenos de Avispas/metabolismo , Avispas
4.
Mol Ecol ; 30(18): 4567-4583, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245612

RESUMEN

There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.


Asunto(s)
Polydnaviridae , Avispas , Animales , Herbivoria , Interacciones Huésped-Parásitos , Larva , Proteómica
5.
Sci Rep ; 11(1): 8990, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903703

RESUMEN

Therophilus javanus (Bhat & Gupta) is an exotic larval endoparasitoid newly imported from Asia into Africa as a classical biological control agent against the pod borer Maruca vitrata (Fabricius). The parasitoid preference for the five larval instars of M. vitrata and their influence on progeny sex ratio were assessed together with the impact of larval host age at the time of oviposition on development time, mother longevity and offspring production. In a choice situation, female parasitoids preferred to oviposit in the first three larval instars. The development of immature stages of the parasitoid was observed inside three-day-old hosts, whereby the first two larval instars of T. javanus completed their development as endoparasites and the third larval instar as ectoparasite. The development time was faster when first larval instars (two- and three-day-old) of the host caterpillars were parasitized compared to second larval instar (four-day-old). The highest proportion of daughters (0.51) was observed when females were provided with four-day-old hosts. The lowest intrinsic rate of increase (r) (0.21 ± 0.01), the lowest rate of increase (λ) (1.23 ± 0.01), and the lowest net reproductive rate (Ro) (35.93 ± 6.51) were recorded on four-day-old hosts. These results are discussed in the light of optimizing mass rearing and release strategies.


Asunto(s)
Mariposas Nocturnas/parasitología , Control Biológico de Vectores , Avispas/fisiología , Animales , Femenino , Larva/parasitología , Masculino , Reproducción
6.
BMC Biol ; 18(1): 89, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32703219

RESUMEN

BACKGROUND: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.


Asunto(s)
Evolución Molecular , Genoma Viral , Interacciones Microbiota-Huesped , Polydnaviridae/genética , Avispas/virología , Animales , Especificidad de la Especie , Secuenciación Completa del Genoma
7.
Mol Biol Evol ; 37(10): 2791-2807, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32080746

RESUMEN

Some species of parasitic wasps have domesticated viral machineries to deliver immunosuppressive factors to their hosts. Up to now, all described cases fall into the Ichneumonoidea superfamily, which only represents around 10% of hymenoptera diversity, raising the question of whether such domestication occurred outside this clade. Furthermore, the biology of the ancestral donor viruses is completely unknown. Since the 1980s, we know that Drosophila parasitoids belonging to the Leptopilina genus, which diverged from the Ichneumonoidea superfamily 225 Ma, do produce immunosuppressive virus-like structure in their reproductive apparatus. However, the viral origin of these structures has been the subject of debate. In this article, we provide genomic and experimental evidence that those structures do derive from an ancestral virus endogenization event. Interestingly, its close relatives induce a behavior manipulation in present-day wasps. Thus, we conclude that virus domestication is more prevalent than previously thought and that behavior manipulation may have been instrumental in the birth of such associations.


Asunto(s)
Drosophila/parasitología , Transferencia de Gen Horizontal , Genes Virales , Avispas/genética , Avispas/virología , Adaptación Biológica , Animales , Conducta Animal , Femenino , Genoma de los Insectos , Larva/parasitología , Selección Genética , Avispas/ultraestructura
8.
PLoS Pathog ; 15(12): e1008210, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31834912

RESUMEN

There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals.


Asunto(s)
Virión/fisiología , Avispas/genética , Avispas/virología , Animales , Genes Virales/genética , Polydnaviridae/genética , Interferencia de ARN
9.
Viruses ; 11(9)2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533310

RESUMEN

The success of oral infection by viruses depends on their capacity to overcome the gut epithelial barrier of their host to crossing over apical, mucous extracellular matrices. As orally transmitted viruses, densoviruses, are also challenged by the complexity of the insect gut barriers, more specifically by the chitinous peritrophic matrix, that lines and protects the midgut epithelium; how capsids stick to and cross these barriers to reach their final cell destination where replication goes has been poorly studied in insects. Here, we analyzed the early interaction of the Junonia coenia densovirus (JcDV) with the midgut barriers of caterpillars from the pest Spodoptera frugiperda. Using combination of imaging, biochemical, proteomic and transcriptomic analyses, we examined in vitro, ex vivo and in vivo the early interaction of the capsids with the peritrophic matrix and the consequence of early oral infection on the overall gut function. We show that the JcDV particle rapidly adheres to the peritrophic matrix through interaction with different glycans including chitin and glycoproteins, and that these interactions are necessary for oral infection. Proteomic analyses of JcDV binding proteins of the peritrophic matrix revealed mucins and non-mucins proteins including enzymes already known to act as receptors for several insect pathogens. In addition, we show that JcDV early infection results in an arrest of N-Acetylglucosamine secretion and a disruption in the integrity of the peritrophic matrix, which may help viral particles to pass through. Finally, JcDV early infection induces changes in midgut genes expression favoring an increased metabolism including an increased translational activity. These dysregulations probably participate to the overall dysfunction of the gut barrier in the early steps of viral pathogenesis. A better understanding of early steps of densovirus infection process is crucial to build biocontrol strategies against major insect pests.


Asunto(s)
Densovirus/fisiología , Control Biológico de Vectores , Polisacáridos/metabolismo , Spodoptera/virología , Animales , Perfilación de la Expresión Génica , Proteómica
10.
Front Immunol ; 10: 1688, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379874

RESUMEN

Endoparasitoid wasps, which lay eggs inside the bodies of other insects, use various strategies to protect their offspring from the host immune response. The hymenopteran species of the genus Leptopilina, parasites of Drosophila, rely on the injection of a venom which contains proteins and peculiar vesicles (hereafter venosomes). We show here that the injection of purified L. boulardi venosomes is sufficient to impair the function of the Drosophila melanogaster lamellocytes, a hemocyte type specialized in the defense against wasp eggs, and thus the parasitic success of the wasp. These venosomes seem to have a unique extracellular biogenesis in the wasp venom apparatus where they acquire specific secreted proteins/virulence factors and act as a transport system to deliver these compounds into host lamellocytes. The level of venosomes entry into lamellocytes of different Drosophila species was correlated with the rate of parasitism success of the wasp, suggesting that this venosome-cell interaction may represent a new evolutionary level of host-parasitoid specificity.


Asunto(s)
Drosophila melanogaster/inmunología , Vesículas Extracelulares/inmunología , Especificidad del Huésped/inmunología , Factores de Virulencia/inmunología , Venenos de Avispas/inmunología , Avispas/inmunología , Animales , Hemocitos/inmunología , Interacciones Huésped-Parásitos
11.
Virus Res ; 263: 189-206, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30738799

RESUMEN

Bathyplectes spp. are ichneumonid solitary larval parasitoids of the alfalfa weevil which have been classified in the subfamily Campopleginae and which harbor atypical virus particles. Despite the morphological differences between Bathyplectes spp. particles and the polydnaviruses carried by a number of related campoplegine species, called ichnoviruses, the process by which they are produced is very similar to that of ichnoviruses. To address the question of the nature and origin of these atypical particles, the Bathyplectes anurus ovary transcriptome has been analyzed. We found a number of highly expressed transcripts displaying similarities with genes belonging to the machinery involved in the production of ichnovirus particles. In addition, transcripts with similarities with repeat-element genes, which are characteristic of the packaged campoplegine ichnovirus genome were identified. Altogether, our results provide evidence that Bathyplectes particles are related to ichnoviruses.


Asunto(s)
Himenópteros/virología , Polydnaviridae/aislamiento & purificación , Gorgojos/parasitología , Animales , Femenino , Perfilación de la Expresión Génica , Larva/parasitología , Ovario/virología , Polydnaviridae/clasificación , Polydnaviridae/genética
12.
Environ Microbiol ; 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585387

RESUMEN

Culex pipiens densovirus (CpDV), a single stranded DNA virus, has been isolated from Culex pipiens mosquitoes but differs from other mosquito densoviruses in terms of genome structure and sequence identity. Its transmission from host to host, the nature of its interactions with both its host and host's endosymbiotic bacteria Wolbachia are not known. Here, we report the presence of CpDV in the ovaries and eggs of Cx. pipiens mosquitoes in close encounters with Wolbachia. In the ovaries, CpDV amount significantly differed between mosquito lines harbouring different strains of Wolbachia and these differences were not linked to variations in Wolbachia densities. CpDV was vertically transmitted in all laboratory lines to 17%-20% of the offspring. For some females, however, the vertical transmission reached 90%. Antibiotic treatment that cured the host from Wolbachia significantly decreased both CpDV quantity and vertical transmission suggesting an impact of host microbiota, including Wolbachia, on CpDV transmission. Overall our results show that CpDV is transmitted vertically via transovarian path along with Wolbachia with which it shares the same cells. Our results are primordial to understand the dynamics of densovirus infection, their persistence and spread in populations considering their potential use in the regulation of mosquito vector populations.

13.
J Insect Physiol ; 107: 68-80, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29477467

RESUMEN

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.


Asunto(s)
Venenos de Artrópodos/química , Glándulas Exocrinas/citología , Transcriptoma , Avispas/fisiología , Animales , Glándulas Exocrinas/ultraestructura , Femenino , Heterópteros , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Microscopía Electrónica de Transmisión , Fenotipo , Avispas/citología , Avispas/genética , Avispas/ultraestructura
14.
Psyche (Camb Mass) ; 2017: 3156534, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-33487760

RESUMEN

Therophilus javanus is a koinobiont, solitary larval endoparasitoid currently being considered as a biological control agent against the pod borer Maruca vitrata, a devastating cowpea pest causing 20-80% crop losses in West Africa. We investigated ovary morphology and anatomy, oogenesis, potential fecundity, and egg load in T. javanus, as well as the effect of factors such as age of the female and parasitoid/host size at oviposition on egg load. The number of ovarioles was found to be variable and significantly influenced by the age/size of the M. vitrata caterpillar when parasitized. Egg load also was strongly influenced by both the instar of M. vitrata caterpillar at the moment of parasitism and wasp age. The practical implications of these findings for improving mass rearing of the parasitoid toward successful biological control of M. vitrata are discussed.

15.
Sci Rep ; 6: 35873, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27779241

RESUMEN

Venom composition of parasitoid wasps attracts increasing interest - notably molecules ensuring parasitism success on arthropod pests - but its variation within and among taxa is not yet understood. We have identified here the main venom proteins of two braconid wasps, Psyttalia lounsburyi (two strains from South Africa and Kenya) and P. concolor, olive fruit fly parasitoids that differ in host range. Among the shared abundant proteins, we found a GH1 ß-glucosidase and a family of leucine-rich repeat (LRR) proteins. Olive is extremely rich in glycoside compounds that are hydrolyzed by ß-glucosidases into defensive toxic products in response to phytophagous insect attacks. Assuming that Psyttalia host larvae sequester ingested glycosides, the injected venom GH1 ß-glucosidase could induce the release of toxic compounds, thus participating in parasitism success by weakening the host. Venom LRR proteins are similar to truncated Toll-like receptors and may possibly scavenge the host immunity. The abundance of one of these LRR proteins in the venom of only one of the two P. lounsburyi strains evidences intraspecific variation in venom composition. Altogether, venom intra- and inter-specific variation in Psyttalia spp. were much lower than previously reported in the Leptopilina genus (Figitidae), suggesting it might depend upon the parasitoid taxa.


Asunto(s)
Proteínas de Insectos/análisis , Proteínas/análisis , Venenos de Avispas/química , Venenos de Avispas/enzimología , Avispas , beta-Glucosidasa/análisis , Animales , Kenia , Proteínas Repetidas Ricas en Leucina , Proteoma/análisis , Sudáfrica
16.
J Gen Virol ; 97(2): 523-535, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26642803

RESUMEN

Parasitoid wasps can be found in association with heritable viruses. Although some viruses have been shown to profoundly affect the biology and evolution of parasitoid wasps, the genetic and phenotypic diversity of parasitoid-associated viruses remains largely unexplored. We previously discovered a behaviour-manipulating DNA virus in the parasitoid wasp Leptopilina boulardi. In this species, which lays its eggs inside Drosophila larvae, Leptopilina boulardi filamentous virus (LbFV) forces the females to lay their eggs in already parasitized Drosophila larvae. This behavioural manipulation increases the chances for the horizontal transmission of the virus. Here, we describe in the same parasitoid species another virus, which we propose to call Leptopilina boulardi toti-like virus (LbTV). This double-stranded RNA virus is highly prevalent in insect laboratory lines as well as in parasitoids caught in the field. In some cases, LbTV was found in coinfection with LbFV, but did not affect the behaviour of the wasp. Instead we found that the presence of LbTV correlates with an increase in the number of offspring, mostly due to increased survival of parasitoid larvae. LbTV is vertically transmitted mostly through the maternal lineage even if frequent paternal transmission also occurs. Unlike LbFV, LbTV is not horizontally transmitted. Its genome encodes a putative RNA-dependent RNA polymerase (RdRp) showing similarities with RdRps of Totiviridae. These results underline the high incidence and diversity of inherited viruses in parasitoids as well as their potential impact on the phenotype of their hosts.


Asunto(s)
Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Totiviridae/genética , Totiviridae/aislamiento & purificación , Avispas/virología , Animales , Conducta Animal , Análisis por Conglomerados , Femenino , Transmisión Vertical de Enfermedad Infecciosa , Virus de Insectos/clasificación , Masculino , Datos de Secuencia Molecular , Filogenia , Prevalencia , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Análisis de Supervivencia , Totiviridae/clasificación , Avispas/fisiología , Testamentos
17.
Sci Adv ; 1(10): e1501150, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26702449

RESUMEN

Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.

18.
Proc Biol Sci ; 282(1803): 20142773, 2015 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25673681

RESUMEN

Many parasites modify their host behaviour to improve their own transmission and survival, but the proximate mechanisms remain poorly understood. An original model consists of the parasitoid Dinocampus coccinellae and its coccinellid host, Coleomegilla maculata; during the behaviour manipulation, the parasitoid is not in contact with its host anymore. We report herein the discovery and characterization of a new RNA virus of the parasitoid (D. coccinellae paralysis virus, DcPV). Using a combination of RT-qPCR and transmission electron microscopy, we demonstrate that DcPV is stored in the oviduct of parasitoid females, replicates in parasitoid larvae and is transmitted to the host during larval development. Next, DcPV replication in the host's nervous tissue induces a severe neuropathy and antiviral immune response that correlate with the paralytic symptoms characterizing the behaviour manipulation. Remarkably, virus clearance correlates with recovery of normal coccinellid behaviour. These results provide evidence that changes in ladybeetle behaviour most likely result from DcPV replication in the cerebral ganglia rather than by manipulation by the parasitoid. This offers stimulating prospects for research on parasitic manipulation by suggesting for the first time that behaviour manipulation could be symbiont-mediated.


Asunto(s)
Escarabajos/parasitología , Escarabajos/virología , Virus ARN/fisiología , Avispas/virología , Animales , Escarabajos/fisiología , Femenino , Interacciones Huésped-Parásitos , Larva/parasitología , Larva/virología , Datos de Secuencia Molecular , Oviductos/virología , Avispas/fisiología
19.
Curr Opin Insect Sci ; 6: 44-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32846675

RESUMEN

Ichnoviruses (IVs), unique symbiotic viruses carried by ichneumonid campoplegine wasps, derive from integration of a paleo-ichnovirus into an ancestral wasp genome. The modern 'genome' is composed of both regions that are amplified, circularized and encapsidated into viral particles and non-encapsidated viral genomic regions involved in particle morphogenesis. Packaged genomes include multiple circular dsDNAs encoding many genes mostly organized in gene families. Virus particles are assembled in specialized ovarian cells from which they exit into the oviduct lumen; mature virions are injected during oviposition into the insect host. Expression of viral proteins in infected cells correlates with physiological alterations of the host enabling success of parasitism.

20.
J Insect Physiol ; 59(4): 500-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23458339

RESUMEN

An endoparasitic life style is widespread among Hymenoptera, and various different strategies allowing parasitoids to escape from the host encapsulation response have been reported. Species carrying polydnaviruses (PDVs), such as the ichneumonid Hyposoter didymator, generally rely on the viral symbionts to evade host immune responses. In this work, we show that H. didymator eggs can evade encapsulation by the host in the absence of calyx fluid (containing the viral particles), whereas protection of the larvae requires the presence of calyx fluid. This evasion by the eggs depends on proteins associated with the exochorion. This type of local passive strategy has been described for a few species carrying PDVs. Immune evasion by braconid eggs appears to be related to PDVs or proteins synthesized in the oviducts being associated with the egg. We report that in H. didymator, by contrast, proteins already present in the ovarian follicles are responsible for the eggs avoiding encapsulation. Mass spectrometry analysis of the egg surface proteins revealed the presence of host immune-related proteins, including one with similarities with apolipophorin-III, and also the presence of three viral proteins encoded by IVSPERs (Ichnovirus Structural Protein Encoding Regions).


Asunto(s)
Spodoptera/inmunología , Spodoptera/parasitología , Avispas/fisiología , Animales , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Femenino , Inmunidad Celular , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Larva/inmunología , Larva/parasitología , Larva/fisiología , Larva/virología , Óvulo/fisiología , Óvulo/ultraestructura , Polydnaviridae/fisiología , Reacción en Cadena de la Polimerasa , Proteoma/genética , Proteoma/metabolismo , Spodoptera/virología , Espectrometría de Masas en Tándem , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética , Virión/metabolismo , Avispas/crecimiento & desarrollo , Avispas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...