Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7500, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980360

RESUMEN

Sanguina nivaloides is the main alga forming red snowfields in high mountains and Polar Regions. It is non-cultivable. Analysis of environmental samples by X-ray tomography, focused-ion-beam scanning-electron-microscopy, physicochemical and physiological characterization reveal adaptive traits accounting for algal capacity to reside in snow. Cysts populate liquid water at the periphery of ice, are photosynthetically active, can survive for months, and are sensitive to freezing. They harbor a wrinkled plasma membrane expanding the interface with environment. Ionomic analysis supports a cell efflux of K+, and assimilation of phosphorus. Glycerolipidomic analysis confirms a phosphate limitation. The chloroplast contains thylakoids oriented in all directions, fixes carbon in a central pyrenoid and produces starch in peripheral protuberances. Analysis of cells kept in the dark shows that starch is a short-term carbon storage. The biogenesis of cytosolic droplets shows that they are loaded with triacylglycerol and carotenoids for long-term carbon storage and protection against oxidative stress.


Asunto(s)
Quistes , Nieve , Humanos , Cloroplastos/metabolismo , Quistes/metabolismo , Carbono/metabolismo , Almidón/metabolismo
2.
J Hazard Mater ; 446: 130668, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608581

RESUMEN

Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Uranio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Compuestos Férricos/metabolismo , Membrana Celular/metabolismo , Cationes/química , Cationes/metabolismo , Uranio/química , Proteínas de Unión al Calcio/metabolismo
3.
Plant J ; 112(5): 1252-1265, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36269689

RESUMEN

Iron is an essential micronutrient for plant growth and development. Under low iron conditions, Arabidopsis plants take up soil iron using the root iron transporter IRT1. In addition to iron, IRT1 also transports others divalent metals, including cadmium, which consequently accumulates into plant tissues and enters the food chain. IRT1 expression was shown to be regulated at the transcriptional and post-translational levels by its essential metal substrates to maximize iron uptake while limiting the accumulation of zinc, manganese, or cobalt. Here, we characterized the regulation of IRT1 by cadmium. A short-term exposure to cadmium decreased the cell surface levels of IRT1 through endocytosis and degradation, but with a lower efficiency than observed for other IRT1 metal substrates. We demonstrated that IRT1 endocytosis in response to cadmium is mediated through the direct binding of cadmium to histidine residues within the regulatory loop of IRT1. However, we revealed that the affinity of the metal sensing motif is much lower for cadmium compared to other metal substrates of IRT1. Finally, we proved that cadmium-induced IRT1 degradation takes place through ubiquitin-mediated endocytosis driven by the UBC35/36 E2 ubiquitin-conjugating enzymes and the IDF1 E3 ubiquitin ligase. Altogether, this work sheds light on the mechanisms of cadmium-mediated downregulation of IRT1 and provides an additional molecular basis for cadmium accumulation and toxicity in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Catión , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Metales/metabolismo , Hierro/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
J Hazard Mater ; 422: 126894, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416697

RESUMEN

Uranium (U) is a naturally-occurring radionuclide that is toxic for all living organisms. To date, the mechanisms of U uptake are far from being understood. Here we provide a direct characterization of the transport machineries capable of transporting U, using the yeast Saccharomyces cerevisiae as a unicellular eukaryote model. First, we evidenced a metabolism-dependent U transport in yeast. Then, competition experiments with essential metals allowed us to identify calcium, iron and copper entry pathways as potential routes for U uptake. The analysis of various metal transport mutants revealed that mutant affected in calcium (mid1Δ and cch1Δ) and Fe(III) (ftr1Δ) transport, exhibited highly reduced U uptake rates and accumulation, demonstrating the implication of the calcium channel Mid1/Cch1 and the iron permease Ftr1 in U uptake. Finally, expression of the Mid1 gene into the mid1Δ mutant restored U uptake levels of the wild type strain, underscoring the central role of the Mid1/Cch1 calcium channel in U absorption process in yeast. Our results also open up the opportunity for rapid screening of U-transporter candidates by functional expression in yeast, before their validation in more complex higher eukaryote model systems.


Asunto(s)
Glicoproteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Calcio/metabolismo , Canales de Calcio , Compuestos Férricos/metabolismo , Hierro/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Hazard Mater ; 424(Pt B): 127436, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34638071

RESUMEN

Uranium (U) is a non-essential and toxic element that is taken up by plants from the environment. The assimilation pathway of U is still unknown in plants. In this study, we provide several evidences that U is taken up by the roots of Arabidopsis thaliana through Ca2+-permeable cation channels. First, we showed that deprivation of Arabidopsis plants with calcium induces a 1.5-fold increase in the capacity of roots to accumulate U, suggesting that calcium deficiency promotes the radionuclide import pathway. Second, we showed that external calcium inhibits U accumulation in roots, suggesting a common route for the uptake of both cations. Third, we found that gadolinium, nifedipine and verapamil inhibit the absorption of U, suggesting that different types of Ca2+-permeable channels serve as a route for U uptake. Last, we showed that U bioaccumulation in Arabidopsis mutants deficient for the Ca2+-permeable channels MCA1 and ANN1 is decreased by 40%. This suggests that MCA1 and ANN1 contribute to the absorption of U in different zones and cell layers of the root. Together, our results describe for the first time the involvement of Ca2+-permeable cation channels in the cellular uptake of U.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Uranio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales de Calcio , Cationes , Raíces de Plantas/metabolismo
6.
Environ Microbiol ; 23(11): 6569-6586, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34499794

RESUMEN

Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13 C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.


Asunto(s)
Dinoflagelados , Microalgas , Fotosíntesis , Plancton , Simbiosis
7.
Nanoscale ; 13(19): 8901-8908, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33949561

RESUMEN

Well-organized protein assemblies offer many properties that justify their use for the design of innovative bionanomaterials. Herein, crystals of the oligomerization domain of the LEAFY protein from Ginkgo biloba, organized in a honeycomb architecture, were used as a modular platform for the selective grafting of a ruthenium-based complex. The resulting bio-hybrid crystalline material was fully characterized by UV-visible and Raman spectroscopy and by mass spectrometry and LC-MS analysis after selective enzymatic digestion. Interestingly, insertion of complexes within the tubular structure affords an impressive increase in stability of the crystals, eluding the use of stabilizing cross-linking strategies.


Asunto(s)
Ginkgo biloba , Hojas de la Planta , Cromatografía Liquida , Espectrometría de Masas , Proteínas
8.
J Proteomics ; 239: 104178, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33662612

RESUMEN

Copper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2. A model system consisting in the J774A1 mouse macrophage system, with a strong endosomal/lysosomal pathway, was used. In order to gain wide insights into the cellular responses to copper, a proteomic approach was used. The proteomic results were validated by targeted experiments, and showed differential effects of the import mode on cellular physiology parameters. While the mitochondrial transmembrane potential was kept constant, a depletion in the free glutahione content was observed with copper (ion and polylacrylate complex). Both copper-polyacrylate and polyacrylate induced perturbations in the cytoskeleton and in phagocytosis. Inflammatory responses were also differently altered by copper ion and copper-polyacrylate. Copper-polyacrylate also perturbed several metabolic enzymes. Lastly, enzymes were used as a test set to assess the predictive value of proteomics. SIGNIFICANCE: Proteomic profiling provides an in depth analysis of the alterations induced on cells by copper under two different exposure modes to this metal, namely as the free ion or as a complex with polyacrylate. The cellular responses were substantially different between the two exposure modes, although some cellular effects are shared, such as the depletion in free glutathione. Targeted experiments were used to confirm the proteomic results. Some metabolic enzymes showed altered activities after exposure to the copper-polyacrylate complex. The basal inflammatory responses were different for copper ion and for the copper-polyacrylate complex, while the two forms of copper inhibited lipopolysaccharide-induced inflammatory responses.


Asunto(s)
Proteínas de Transporte de Catión , Cobre , Animales , Cobre/metabolismo , Cobre/farmacología , Glutatión/metabolismo , Macrófagos/metabolismo , Ratones , Proteómica
9.
Metallomics ; 12(8): 1302-1313, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32567634

RESUMEN

Uranium is a naturally occurring radionuclide that is absorbed by plants and interferes with many aspects of their physiology and development. In this study, we used an ionomic, metalloproteomic, and biochemical approach to gain insights into the impact of uranyl ions on the proteome of Arabidopsis thaliana cells. First, we showed that most of the U was trapped in the cell wall and only a small amount of the radionuclide was found in the cell-soluble fraction. Also, the homeostasis of several essential elements was significantly modified in the cells challenged with U. Second, the soluble proteome from Arabidopsis cells was fractionated into 10 subproteomes using anion-exchange chromatography. Proteomic analyses identified 3676 proteins in the different subproteomes and the metal-binding proteins were profiled using inductively coupled plasma mass spectrometry. Uranium was detected in several chromatographic fractions, indicating for the first time that several pools of Arabidopsis proteins are capable of binding the uranyl ion in vivo. Third, we showed that the pattern of some lysine and arginine methylated proteins was modified following exposure to U. We further identified that the ribosomal protein RPS10C was dimethylated at two arginine residues in response to uranyl ion stress. Together, these results provide the first clues for the impact of U on the Arabidopsis proteome and pave the way for the future identification of U-binding proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteómica/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Uranio/metabolismo
10.
Plant Cell Environ ; 43(3): 760-774, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31759334

RESUMEN

The mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analysed the importance of protein lysine methylation for plants to cope with cadmium. We analysed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in two cadmium-sensitive species, Arabidopsis thaliana and A. lyrata, and in three populations of A. halleri with contrasting cadmium accumulation and tolerance traits. We showed that some proteins are differentially methylated at lysine residues in response to Cd and that a few genes coding KMTs are regulated by cadmium. Also, we showed that 9 out of 23 A. thaliana mutants disrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, and the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that lysine methylation of non-histone proteins is impacted by cadmium and that several methylation events are important for modulating the response of Arabidopsis plants to cadmium stress.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Cadmio/toxicidad , Lisina/metabolismo , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
11.
J Exp Bot ; 69(19): 4569-4581, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29931361

RESUMEN

Protein methylation is a very diverse, widespread, and important post-translational modification affecting all aspects of cellular biology in eukaryotes. Methylation on the side-chain of lysine residues in histones has received considerable attention due to its major role in determining chromatin structure and the epigenetic regulation of gene expression. Over the last 20 years, lysine methylation of non-histone proteins has been recognized as a very common modification that contributes to the fine-tuned regulation of protein function. In plants, our knowledge in this field is much more fragmentary than in yeast and animal cells. In this review, we describe the plant enzymes involved in the methylation of non-histone substrates, and we consider historical and recent advances in the identification of non-histone lysine-methylated proteins in photosynthetic organisms. Finally, we discuss our current knowledge about the role of protein lysine methylation in regulating molecular and cellular functions in plants, and consider challenges for future research.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Lisina/metabolismo , Metilación , Proteínas de Plantas/metabolismo
12.
New Phytol ; 217(2): 657-670, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29165807

RESUMEN

Uranium (U) is a naturally occurring radionuclide that is toxic to plants. It is known to interfere with phosphate nutrition and to modify the expression of iron (Fe)-responsive genes. The transporters involved in the uptake of U from the environment are unknown. Here, we addressed whether IRT1, a high-affinity Fe2+ transporter, could contribute to U uptake in Arabidopsis thaliana. An irt1 null mutant was grown hydroponically in different conditions of Fe bioavailability and phosphate supply, and challenged with uranyl. Several physiological parameters (fitness, photosynthesis) were measured to evaluate the response to U treatment. We found that IRT1 is not a major route for U uptake in our experimental conditions. However, the analysis of irt1 indicated that uranyl interferes with Fe and phosphate homeostasis at different levels. In phosphate-sufficient conditions, the absence of the cation chelator EDTA in the medium has drastic consequences on the physiology of irt1, with important symptoms of Fe deficiency in chloroplasts. These effects are counterbalanced by U, probably because the radionuclide competes with Fe for complexation with phosphate and thus releases active Fe for metabolic and biogenic processes. Our study reveals that challenging plants with U is useful to decipher the complex interplay between Fe and phosphate.


Asunto(s)
Arabidopsis/metabolismo , Homeostasis/efectos de los fármacos , Hierro/metabolismo , Fosfatos/metabolismo , Uranio/toxicidad , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Biomasa , Proteínas de Transporte de Catión/metabolismo , Modelos Biológicos , Fenotipo , Fotosíntesis/efectos de los fármacos , Pigmentos Biológicos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos
13.
Plant Physiol ; 175(3): 1203-1219, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28935841

RESUMEN

Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction. To answer this question, we performed plastome- and genomewide array analyses in the pap7-1 mutant of Arabidopsis (Arabidopsis thaliana). In parallel, we determined the potential overlap with light-regulated expression networks. To this end, we performed a comparative expression profiling approach using light- and dark-grown wild-type plants as relative control for the expression profiles obtained from light-grown pap7-1 mutants. Our data indicate a specific impact of retrograde signals on metabolism-related genes in pap7-1 mutants reflecting the starvation situation of the albino seedlings. In contrast, light regulation of PhANGs and other nuclear gene groups appears to be fully functional in this mutant, indicating that a block in chloroplast biogenesis per se does not repress expression of them as suggested by earlier studies. Only genes for light harvesting complex proteins displayed a significant repression indicating an exclusive retrograde impact on this gene family. Our results indicate that chloroplasts and arrested plastids each emit specific signals that control different target gene modules both in positive and negative manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Cloroplastos/genética , Genes de Plantas , Luz , Metiltransferasas/genética , Mutación/genética , Plastidios/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ontología de Genes , Redes Reguladoras de Genes , Modelos Biológicos , Morfogénesis/efectos de la radiación , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Plastidios/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de la radiación
14.
Mol Phylogenet Evol ; 114: 401-414, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28694102

RESUMEN

DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.


Asunto(s)
Evolución Molecular , Poaceae/metabolismo , Compuestos de Sulfonio/metabolismo , Aldehído Deshidrogenasa/clasificación , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Carboxiliasas/clasificación , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Metiltransferasas/clasificación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/clasificación , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Filogenia , Poaceae/clasificación , Poaceae/genética , Poliploidía , Compuestos de Sulfonio/análisis
15.
Plant Physiol ; 174(2): 922-934, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28442501

RESUMEN

Higher plants, as autotrophic organisms, are effective sources of molecules. They hold great promise for metabolic engineering, but the behavior of plant metabolism at the network level is still incompletely described. Although structural models (stoichiometry matrices) and pathway databases are extremely useful, they cannot describe the complexity of the metabolic context, and new tools are required to visually represent integrated biocurated knowledge for use by both humans and computers. Here, we describe ChloroKB, a Web application (http://chlorokb.fr/) for visual exploration and analysis of the Arabidopsis (Arabidopsis thaliana) metabolic network in the chloroplast and related cellular pathways. The network was manually reconstructed through extensive biocuration to provide transparent traceability of experimental data. Proteins and metabolites were placed in their biological context (spatial distribution within cells, connectivity in the network, participation in supramolecular complexes, and regulatory interactions) using CellDesigner software. The network contains 1,147 reviewed proteins (559 localized exclusively in plastids, 68 in at least one additional compartment, and 520 outside the plastid), 122 proteins awaiting biochemical/genetic characterization, and 228 proteins for which genes have not yet been identified. The visual presentation is intuitive and browsing is fluid, providing instant access to the graphical representation of integrated processes and to a wealth of refined qualitative and quantitative data. ChloroKB will be a significant support for structural and quantitative kinetic modeling, for biological reasoning, when comparing novel data with established knowledge, for computer analyses, and for educational purposes. ChloroKB will be enhanced by continuous updates following contributions from plant researchers.


Asunto(s)
Cloroplastos/metabolismo , Internet , Bases del Conocimiento , Redes y Vías Metabólicas , Arabidopsis/metabolismo , Fracciones Subcelulares/metabolismo
16.
Plant J ; 89(1): 112-127, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27598402

RESUMEN

Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Hojas de la Planta/metabolismo , Proteína Fosfatasa 2/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metionina/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Biológicos , Hojas de la Planta/genética , Unión Proteica , Proteína Fosfatasa 2/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteómica/métodos , Homología de Secuencia de Aminoácido
17.
Mol Plant ; 9(4): 569-81, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26785049

RESUMEN

Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity.


Asunto(s)
Aldehído-Liasas/metabolismo , Cloroplastos/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Evolución Molecular , Metilación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Dominios Proteicos , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Especificidad por Sustrato
18.
Plant Cell Physiol ; 56(9): 1697-710, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26116422

RESUMEN

Methylation of ribosomal proteins has long been described in prokaryotes and eukaryotes, but our knowledge about the enzymes responsible for these modifications in plants is scarce. The bacterial protein methyltransferase PrmA catalyzes the trimethylation of ribosomal protein L11 (RPL11) at three distinct sites. The role of these modifications is still unknown. Here, we show that PrmA from Arabidopsis thaliana (AtPrmA) is dually targeted to chloroplasts and mitochondria. Mass spectrometry and enzymatic assays indicated that the enzyme methylates RPL11 in plasto- and mitoribosomes in vivo. We determined that the Arabidopsis and Escherichia coli PrmA enzymes share similar product specificity, making trimethylated residues, but, despite an evolutionary relationship, display a difference in substrate site specificity. In contrast to the bacterial enzyme that trimethylates the ε-amino group of two lysine residues and the N-terminal α-amino group, AtPrmA methylates only one lysine in the MAFCK(D/E)(F/Y)NA motif of plastidial and mitochondrial RPL11. The plant enzyme possibly methylates the N-terminus of plastidial RPL11, whereas mitochondrial RPL11 is N-α-acetylated by an unknown acetyltransferase. Lastly, we found that an Arabidopsis prma-null mutant is viable in standard environmental conditions and no molecular defect could be associated with a lack of RPL11 methylation in leaf chloroplasts or mitochondria. However, the conservation of PrmA during the evolution of photosynthetic eukaryotes together with the location of methylated residues at the binding site of translation factors to ribosomes suggests that RPL11 methylation in plant organelles could be involved, in combination with other post-translational modifications, in optimizing ribosome function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/enzimología , Metiltransferasas/metabolismo , Mitocondrias/enzimología , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Prueba de Complementación Genética , Germinación , Metilación , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Fotosíntesis , Filogenia , Biosíntesis de Proteínas , Transporte de Proteínas , Fracciones Subcelulares/metabolismo
19.
PLoS One ; 9(4): e95512, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24748391

RESUMEN

Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division). Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the ß-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Arginina/metabolismo , Bases de Datos de Proteínas , Espacio Intracelular/metabolismo , Lisina/metabolismo , Espectrometría de Masas , Metilación , Metiltransferasas/metabolismo , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
Annu Rev Genet ; 46: 233-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22934643

RESUMEN

Plastids are semiautonomous organelles derived from cyanobacterial ancestors. Following endosymbiosis, plastids have evolved to optimize their functions, thereby limiting metabolic redundancy with other cell compartments. Contemporary plastids have also recruited proteins produced by the nuclear genome of the host cell. In addition, many genes acquired from the cyanobacterial ancestor evolved to code for proteins that are targeted to cell compartments other than the plastid. Consequently, metabolic pathways are now a patchwork of enzymes of diverse origins, located in various cell compartments. Because of this, a wide range of metabolites and ions traffic between the plastids and other cell compartments. In this review, we provide a comprehensive analysis of the well-known, and of the as yet uncharacterized, chloroplast/cytosol exchange processes, which can be deduced from what is currently known about compartmentation of plant-cell metabolism.


Asunto(s)
Cloroplastos/metabolismo , Citoplasma/metabolismo , Plastidios/metabolismo , Dióxido de Carbono/metabolismo , Compartimento Celular , Proteínas de Cloroplastos/metabolismo , Cianobacterias/metabolismo , Evolución Molecular , Tamaño de los Orgánulos , Oxidación-Reducción , Fotosíntesis , Células Vegetales/metabolismo , Transporte de Proteínas , Proteómica/métodos , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA