Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38499487

RESUMEN

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Asunto(s)
ARN Helicasas DEAD-box , Factores de Empalme de ARN , ARN Nuclear Pequeño , Proteínas de Unión al ARN , Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Humanos , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Empalme del ARN , Intrones/genética , Células HeLa , Unión Proteica , Cuerpos Enrollados/metabolismo , Células HEK293
2.
Viruses ; 13(2)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671332

RESUMEN

RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure-based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism. The structure-based distance tree presented here follows the recently established RdRp-based RNA virus classification at genus, subfamily, family, order, class and subphylum ranks. However, the topology of our phylogenetic tree suggests an alternative phylum level organization.


Asunto(s)
Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/química , Proteínas Virales/química , Modelos Moleculares , Filogenia , Conformación Proteica en Hélice alfa , Dominios Proteicos , Virus ARN/química , Virus ARN/clasificación , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Microorganisms ; 8(12)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276599

RESUMEN

The role of prophages in the evolution, diversification, or virulence of the fish pathogen Flavobacterium columnare has not been studied thus far. Here, we describe a functional spontaneously inducing prophage fF4 from the F. columnare type strain ATCC 23463, which is not detectable with commonly used prophage search methods. We show that this prophage type has a global distribution and is present in strains isolated from Finland, Thailand, Japan, and North America. The virions of fF4 are myoviruses with contractile tails and infect only bacterial strains originating from Northern Finland. The fF4 resembles transposable phages by similar genome organization and several gene orthologs. Additional bioinformatic analyses reveal several species in the phylum Bacteroidetes that host a similar type of putative prophage, including bacteria that are important animal and human pathogens. Furthermore, a survey of F. columnare Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) spacers indicate a shared evolutionary history between F. columnare strains and the fF4 phage, and another putative prophage in the F. columnare strain ATCC 49512, named p49512. First, CRISPR spacer content from the two CRISPR loci (types II-C and VI-B) of the fF4 lysogen F. columnare ATCC 23463 revealed a phage terminase protein-matching spacer in the VI-B locus. This spacer is also present in two Chinese F. columnare strains. Second, CRISPR analysis revealed four F. columnare strains that contain unique spacers targeting different regions of the putative prophage p49512 in the F. columnare strain ATCC 49512, despite the geographical distance or genomovar of the different strains. This suggests a common ancestry for the F. columnare prophages and different host strains.

4.
Viruses ; 12(10)2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050291

RESUMEN

Superimposition of protein structures is key in unravelling structural homology across proteins whose sequence similarity is lost. Structural comparison provides insights into protein function and evolution. Here, we review some of the original findings and thoughts that have led to the current established structure-based phylogeny of viruses: starting from the original observation that the major capsid proteins of plant and animal viruses possess similar folds, to the idea that each virus has an innate "self". This latter idea fueled the conceptualization of the PRD1-adenovirus lineage whose members possess a major capsid protein (innate "self") with a double jelly roll fold. Based on this approach, long-range viral evolutionary relationships can be detected allowing the virosphere to be classified in four structure-based lineages. However, this process is not without its challenges or limitations. As an example of these hurdles, we finally touch on the difficulty of establishing structural "self" traits for enveloped viruses showcasing the coronaviruses but also the power of structure-based analysis in the understanding of emerging viruses.


Asunto(s)
Adenoviridae/metabolismo , Proteínas de la Cápside/metabolismo , Coronavirus/metabolismo , Estructura Terciaria de Proteína/fisiología , Rhinovirus/metabolismo , Adenoviridae/genética , Coronavirus/genética , Cristalografía por Rayos X , Genoma Viral/genética , Rhinovirus/genética , Estructuras Virales/metabolismo
5.
Antibiotics (Basel) ; 9(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486059

RESUMEN

Phage therapy is becoming a widely recognized alternative for fighting pathogenic bacteria due to increasing antibiotic resistance problems. However, one of the common concerns related to the use of phages is the evolution of bacterial resistance against the phages, putatively disabling the treatment. Experimental adaptation of the phage (phage training) to infect a resistant host has been used to combat this problem. Yet, there is very little information on the trade-offs of phage infectivity and host range. Here we co-cultured a myophage FCV-1 with its host, the fish pathogen Flavobacterium columnare, in lake water and monitored the interaction for a one-month period. Phage resistance was detected within one day of co-culture in the majority of the bacterial isolates (16 out of the 18 co-evolved clones). The primary phage resistance mechanism suggests defense via surface modifications, as the phage numbers rose in the first two days of the experiment and remained stable thereafter. However, one bacterial isolate had acquired a spacer in its CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)-Cas locus, indicating that also CRISPR-Cas defense was employed in the phage-host interactions. After a week of co-culture, a phage isolate was obtained that was able to infect 18 out of the 32 otherwise resistant clones isolated during the experiment. Phage genome sequencing revealed several mutations in two open reading frames (ORFs) likely to be involved in the regained infectivity of the evolved phage. Their location in the genome suggests that they encode tail genes. Characterization of this evolved phage, however, showed a direct cost for the ability to infect several otherwise resistant clones-adsorption was significantly lower than in the ancestral phage. This work describes a method for adapting the phage to overcome phage resistance in a fish pathogenic system.

6.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806749

RESUMEN

We report a complete genome sequence of a Finnish isolate of the fish pathogen Flavobacterium columnare Using PacBio RS II sequencing technology, the complete circular genome of F. columnare strain B185 with 3,261,404 bp was obtained.

7.
PLoS One ; 14(5): e0216659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31100077

RESUMEN

Specific cleavage of proteins by proteases is essential for several cellular, physiological, and viral processes. Chymotrypsin-related proteases that form the PA clan in the MEROPS classification of proteases is one of the largest and most diverse group of proteases. The PA clan comprises serine proteases from bacteria, eukaryotes, archaea, and viruses and chymotrypsin-related cysteine proteases from positive-strand RNA viruses. Despite low amino acid sequence identity, all PA clan proteases share a conserved double ß-barrel structure. Using an automated structure-based hierarchical clustering method, we identified a common structural core of 72 amino acid residues for 143 PA clan proteases that represent 12 protein families and 11 subfamilies. The identified core is located around the catalytic site between the two ß-barrels and resembles the structures of the smallest PA clan proteases. We constructed a structure-based distance tree derived from the properties of the identified common core. Our structure-based analyses support the current classification of these proteases at the subfamily level and largely at the family level. Structural alignment and structure-based distance trees could thus be used for directing objective classification of PA clan proteases and to strengthen their higher order classification. Our results also indicate that the PA clan proteases of positive-strand RNA viruses are related to cellular heat-shock proteases, which suggests that the exchange of protease genes between viruses and cells might have occurred more than once.


Asunto(s)
Quimotripsina/clasificación , Quimotripsina/genética , Quimotripsina/ultraestructura , Secuencia de Aminoácidos/genética , Sitios de Unión , Dominio Catalítico , Péptido Hidrolasas/clasificación , Péptido Hidrolasas/ultraestructura , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 114(31): 8378-8383, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716906

RESUMEN

Viruses have impacted the biosphere in numerous ways since the dawn of life. However, the evolution, genetic, structural, and taxonomic diversity of viruses remain poorly understood, in part because sparse sampling of the virosphere has concentrated mostly on exploring the abundance and diversity of dsDNA viruses. Furthermore, viral genomes are highly diverse, and using only the current sequence-based methods for classifying viruses and studying their phylogeny is complicated. Here we describe a virus, FLiP (Flavobacterium-infecting, lipid-containing phage), with a circular ssDNA genome and an internal lipid membrane enclosed in the icosahedral capsid. The 9,174-nt-long genome showed limited sequence similarity to other known viruses. The genetic data imply that this virus might use replication mechanisms similar to those found in other ssDNA replicons. However, the structure of the viral major capsid protein, elucidated at near-atomic resolution using cryo-electron microscopy, is strikingly similar to that observed in dsDNA viruses of the PRD1-adenovirus lineage, characterized by a major capsid protein bearing two ß-barrels. The strong similarity between FLiP and another member of the structural lineage, bacteriophage PM2, extends to the capsid organization (pseudo T = 21 dextro) despite the difference in the genetic material packaged and the lack of significant sequence similarity.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus ADN/genética , Flavobacterium/virología , Genoma Viral/genética , Bacteriófago PRD1/genética , Cápside , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , ADN de Cadena Simple/genética , Lagos/virología , Conformación Proteica
9.
Genome Announc ; 5(23)2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596384

RESUMEN

FL-1, a myophage of Flavobacterium, was found to have a 53-kb genome with 87 putative coding sequences.

10.
Viruses ; 9(2)2017 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-28218714

RESUMEN

Members of the virus family Sphaerolipoviridae include both archaeal viruses and bacteriophages that possess a tailless icosahedral capsid with an internal membrane. The genera Alpha- and Betasphaerolipovirus comprise viruses that infect halophilic euryarchaea, whereas viruses of thermophilic Thermus bacteria belong to the genus Gammasphaerolipovirus. Both sequence-based and structural clustering of the major capsid proteins and ATPases of sphaerolipoviruses yield three distinct clades corresponding to these three genera. Conserved virion architectural principles observed in sphaerolipoviruses suggest that these viruses belong to the PRD1-adenovirus structural lineage. Here we focus on archaeal alphasphaerolipoviruses and their related putative proviruses. The highest sequence similarities among alphasphaerolipoviruses are observed in the core structural elements of their virions: the two major capsid proteins, the major membrane protein, and a putative packaging ATPase. A recently described tailless icosahedral haloarchaeal virus, Haloarcula californiae icosahedral virus 1 (HCIV-1), has a double-stranded DNA genome and an internal membrane lining the capsid. HCIV-1 shares significant similarities with the other tailless icosahedral internal membrane-containing haloarchaeal viruses of the family Sphaerolipoviridae. The proposal to include a new virus species, Haloarcula virus HCIV1, into the genus Alphasphaerolipovirus was submitted to the International Committee on Taxonomy of Viruses (ICTV) in 2016.


Asunto(s)
Virus de Archaea/clasificación , Virus de Archaea/ultraestructura , Bacteriófagos/clasificación , Bacteriófagos/ultraestructura , Filogenia , Virión/ultraestructura , Adenosina Trifosfatasas/genética , Archaea/virología , Virus de Archaea/genética , Bacteriófagos/genética , Proteínas de la Cápside/genética , Análisis de Secuencia de ADN , Thermus/virología
11.
J Virol ; 91(8)2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28122979

RESUMEN

Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds.IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Virus/clasificación , Análisis por Conglomerados , Conformación Proteica , Virus/genética , Virus/ultraestructura
12.
mBio ; 7(4)2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27435460

RESUMEN

UNLABELLED: Despite their high genomic diversity, all known viruses are structurally constrained to a limited number of virion morphotypes. One morphotype of viruses infecting bacteria, archaea, and eukaryotes is the tailless icosahedral morphotype with an internal membrane. Although it is considered an abundant morphotype in extreme environments, only seven such archaeal viruses are known. Here, we introduce Haloarcula californiae icosahedral virus 1 (HCIV-1), a halophilic euryarchaeal virus originating from salt crystals. HCIV-1 also retains its infectivity under low-salinity conditions, showing that it is able to adapt to environmental changes. The release of progeny virions resulting from cell lysis was evidenced by reduced cellular oxygen consumption, leakage of intracellular ATP, and binding of an indicator ion to ruptured cell membranes. The virion contains at least 12 different protein species, lipids selectively acquired from the host cell membrane, and a 31,314-bp-long linear double-stranded DNA (dsDNA). The overall genome organization and sequence show high similarity to the genomes of archaeal viruses in the Sphaerolipoviridae family. Phylogenetic analysis based on the major conserved components needed for virion assembly-the major capsid proteins and the packaging ATPase-placed HCIV-1 along with the alphasphaerolipoviruses in a distinct, well-supported clade. On the basis of its virion morphology and sequence similarities, most notably, those of its core virion components, we propose that HCIV-1 is a member of the PRD1-adenovirus structure-based lineage together with other sphaerolipoviruses. This addition to the lineage reinforces the notion of the ancient evolutionary links observed between the viruses and further highlights the limits of the choices found in nature for formation of a virion. IMPORTANCE: Under conditions of extreme salinity, the majority of the organisms present are archaea, which encounter substantial selective pressure, being constantly attacked by viruses. Regardless of the enormous viral sequence diversity, all known viruses can be clustered into a few structure-based viral lineages based on their core virion components. Our description of a new halophilic virus-host system adds significant insights into the largely unstudied field of archaeal viruses and, in general, of life under extreme conditions. Comprehensive molecular characterization of HCIV-1 shows that this icosahedral internal membrane-containing virus exhibits conserved elements responsible for virion organization. This places the virus neatly in the PRD1-adenovirus structure-based lineage. HCIV-1 further highlights the limited diversity of virus morphotypes despite the astronomical number of viruses in the biosphere. The observed high conservation in the core virion elements should be considered in addressing such fundamental issues as the origin and evolution of viruses and their interplay with their hosts.


Asunto(s)
Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Haloarcula/virología , Cápside/ultraestructura , ADN/genética , Virus ADN/genética , Virus ADN/fisiología , ADN Viral/genética , Ambientes Extremos , Orden Génico , Lípidos/análisis , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Cloruro de Sodio/metabolismo , Sintenía , Proteínas Virales/análisis , Liberación del Virus
13.
Mol Biol Evol ; 33(7): 1697-710, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26931141

RESUMEN

Identification of relationships among protein families or superfamilies is a challenge. However, functionally essential protein regions typically retain structural integrity, even when the corresponding protein sequences evolve. Consequently, comparison of protein structures enables deeper phylogenetic analyses than achievable through the use of sequence information only. Here, we focus on a group of distantly related viral and cellular enzymes involved in nucleic acid or nucleotide processing and synthesis. All these enzymes share an apparently similar protein fold at their active site, which resembles the palm subdomain of the right-hand-shaped polymerases. Using a structure-based hierarchical clustering method, we identified a common structural core of 36 equivalent residues for this functionally diverse group of enzymes, representing five protein superfamilies. Based on the properties of these 36 residues, we deduced a structural distance-based tree in which the proteins were accurately clustered according to the established family classification. Within this tree, the enzymes catalyzing genomic nucleic acid replication or transcription were separated from those performing supplementary nucleic acid or nucleotide processing functions. In addition, we found that the family Y DNA polymerases are structurally more closely related to the nucleotide cyclase superfamily members than to the other members of the DNA/RNA polymerase superfamily, and these enzymes share 88 equivalent residues comprising a Β: 1- Α: 1- Α: 2- Β: 2- Β: 3- Α: 3- Β: 4- Α: 4- Β: 5 fold. The results highlight the power of structure-based hierarchical clustering in identifying remote evolutionary relationships. Furthermore, our study implies that a protein substructure of only three-dozen residues can contain a substantial amount of information on the evolutionary history of proteins.


Asunto(s)
Proteínas/química , Proteínas/genética , Análisis de Secuencia de Proteína/métodos , Homología Estructural de Proteína , Secuencia de Aminoácidos , Dominio Catalítico , Análisis por Conglomerados , Evolución Molecular , Genómica , Modelos Moleculares , Filogenia , Alineación de Secuencia/métodos , Relación Estructura-Actividad
14.
Trends Microbiol ; 24(2): 148-160, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26796472

RESUMEN

Halite is one of the most extreme environments to support life. From the drought of the Atacama Desert to salt deposits up to Permian in age and 2000 meters in burial depth, live microbes have been found. Because halite is geologically stable and impermeable to ground water, the microbes allegedly have a syndepositional origin, making them the oldest organisms known to live on Earth. Recently, our understanding of the microbial diversity inside halite has broadened, and the first genome sequences of ancient halite-buried microbes are now available. The secrets behind prolonged survival in salt are also starting to be revealed.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Sedimentos Geológicos/química , Historia Antigua , Microbiología/historia , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo
15.
Environ Microbiol ; 18(2): 565-79, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26628271

RESUMEN

Live microbes have been isolated from rock salt up to Permian age. Only obligatory cellular functions can be performed in halite-buried cells. Consequently, their genomic sequences are likely to remain virtually unchanged. However, the available sequence information from these organisms is scarce and consists of mainly ribosomal 16S sequences. Here, live archaea were isolated from early Cretaceous (∼ 123 million years old) halite from the depth of 2000 m in Qianjiang Depression, Hubei Province, China. The sample was radiologically dated and subjected to rigorous surface sterilization before microbe isolation. The isolates represented a single novel species of Halobacterium, for which we suggest the name Halobacterium hubeiense, type strain Hbt. hubeiense JI20-1. The species was closely related to a Permian (225-280 million years old) isolate, Halobacterium noricense, originating from Alpine rock salt. This study is the first one to publish the complete genome of an organism originating from surface-sterilized ancient halite. In the future, genomic data from halite-buried microbes can become a key factor in understanding the mechanisms by which these organisms are able to survive in harsh conditions deep underground or possibly on other celestial bodies.


Asunto(s)
ADN de Archaea/genética , Genoma Arqueal/genética , Halobacterium/genética , Cloruro de Sodio , Secuencia de Bases , China , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Halobacterium/clasificación , Halobacterium/aislamiento & purificación , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Front Microbiol ; 6: 829, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347722

RESUMEN

Flavobacterium columnare, the causative agent of columnaris disease in fish, causes millions of dollars of losses in the US channel catfish industry alone, not to mention aquaculture industry worldwide. Novel methods are needed for the control and treatment of bacterial diseases in aquaculture to replace traditionally used chemotherapies. A potential solution could be the use of phages, i.e., bacterial viruses, host-specific and self-enriching particles that can be can easily distributed via water flow. We examined the efficacy of phages to combat columnaris disease. A previously isolated phage, FCL-2, infecting F. columnare, was characterized by sequencing. The 47 142 bp genome of the phage had G + C content of 30.2%, and the closest similarities regarding the structural proteins were found in Cellulophaga phage phiSM. Under controlled experimental conditions, two host fish species, rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio), were used to study the success of phage therapy to prevent F. columnare infections. The survival of both fish species was significantly higher in the presence of the phage. Hundred percent of the zebrafish and 50% of the rainbow trout survived in the phage treatment (survival without phage 0 and 8.3%, respectively). Most importantly, the rainbow trout population was rescued from infection by a single addition of the phage into the water in a flow-through fish tank system. Thus, F. columnare could be used as a model system to test the benefits and risks of phage therapy on a larger scale.

17.
J Gen Virol ; 96(Pt 5): 1180-1189, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25614591

RESUMEN

Cystoviridae is a family of bacteriophages with a tri-segmented dsRNA genome enclosed in a tri-layered virion structure. Here, we present a new putative member of the Cystoviridae family, bacteriophage ϕNN. ϕNN was isolated from a Finnish lake in contrast to the previously identified cystoviruses, which originate from various legume samples collected in the USA. The nucleotide sequence of the virus reveals a strong genetic similarity (~80 % for the L-segments, ~55 % for the M-segments and ~84 % for the S-segments) to Pseudomonas phage ϕ6, the type member of the virus family. However, the relationship between ϕNN and other cystoviruses is more distant. In general, proteins located in the internal parts of the virion were more conserved than those exposed on the virion surface, a phenomenon previously reported among eukaryotic dsRNA viruses. Structural models of several putative ϕNN proteins propose that cystoviral structures are highly conserved.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , Cystoviridae/clasificación , Cystoviridae/aislamiento & purificación , Agua Dulce/virología , Lagos/virología , Bacteriófagos/genética , Análisis por Conglomerados , Cystoviridae/genética , Finlandia , Datos de Secuencia Molecular , Filogenia , Pseudomonas/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
18.
Mol Biol Evol ; 31(10): 2741-52, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063440

RESUMEN

Polymerases are essential for life, being responsible for replication, transcription, and the repair of nucleic acid molecules. Those that share a right-hand-shaped fold and catalytic site structurally similar to the DNA polymerase I of Escherichia coli may catalyze RNA- or DNA-dependent RNA polymerization, reverse transcription, or DNA replication in eukarya, archaea, bacteria, and their viruses. We have applied novel computational methods for structure-based clustering and phylogenetic analyses of this functionally diverse polymerase superfamily, which currently comprises six families. We identified a structural core common to all right-handed polymerases, composed of 57 amino acid residues, harboring two positionally and chemically conserved residues, the catalytic aspartates. The structural conservation within each of the six families is considerable, for example, the structural core shared by family Y DNA polymerases covers over 90% of the polymerase domain of the Sulfolobus solfataricus Dpo4. Our phylogenetic analyses propose an early separation of RNA-dependent polymerases that use primers from those that are primer-independent. Furthermore, the exchange of polymerase genes between viruses and their hosts is evident. Because of this horizontal gene transfer, the phylogeny of polymerases does not always reflect the evolutionary history of the corresponding organisms.


Asunto(s)
Ácido Aspártico/genética , Bacterias/enzimología , Proteínas Bacterianas/química , Biología Computacional/métodos , ADN Polimerasa Dirigida por ADN/química , Secuencia de Aminoácidos , Automatización de Laboratorios/métodos , Bacterias/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Secuencia Conservada , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular , Transferencia de Gen Horizontal , Modelos Moleculares , Filogenia , Proteínas Virales/química , Proteínas Virales/metabolismo , Virus/enzimología
19.
Structure ; 21(8): 1384-95, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23891291

RESUMEN

The hallmark of a virus is its capsid, which harbors the viral genome and is formed from protein subunits, which assemble following precise geometric rules. dsRNA viruses use an unusual protein multiplicity (120 copies) to form their closed capsids. We have determined the atomic structure of the capsid protein (P1) from the dsRNA cystovirus Φ8. In the crystal P1 forms pentamers, very similar in shape to facets of empty procapsids, suggesting an unexpected assembly pathway that proceeds via a pentameric intermediate. Unlike the elongated proteins used by dsRNA mammalian reoviruses, P1 has a compact trapezoid-like shape and a distinct arrangement in the shell, with two near-identical conformers in nonequivalent structural environments. Nevertheless, structural similarity with the analogous protein from the mammalian viruses suggests a common ancestor. The unusual shape of the molecule may facilitate dramatic capsid expansion during phage maturation, allowing P1 to switch interaction interfaces to provide capsid plasticity.


Asunto(s)
Proteínas de la Cápside/química , Cystoviridae/ultraestructura , Fagos Pseudomonas/ultraestructura , Reoviridae , Cápside/ultraestructura , Cristalografía por Rayos X , Cystoviridae/fisiología , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Fagos Pseudomonas/fisiología , Homología Estructural de Proteína , Ensamble de Virus
20.
PLoS One ; 7(7): e40581, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22792374

RESUMEN

A high-affinity divalent cation-binding site located proximal to the catalytic center has been identified in several RNA-dependent RNA polymerases (RdRps), but the characteristics of such a site have not been systematically studied. Here, all available polymerase structures that follow the hand-like structural motif were screened for the presence of a divalent cation close to the catalytic site but distinct from catalytic metal ions. Such non-catalytic ions were found in all RNA virus families for which there were high-resolution RdRp structures available. Bound ions were always located in structurally similar locations at an approximate 6-Å distance from the catalytic site. Furthermore, the second aspartate residue in the highly conserved GDD sequence was found to be involved in the coordination of the bound ion in all viral RdRps studied. These results suggest that a non-catalytic ion-binding site is conserved across positive-sense, single-stranded, and double-stranded RNA viruses. Interestingly, a non-catalytic ion was also observed in a similar position in the reverse transcriptase of the human immunodeficiency virus. Moreover, two members of the DNA-dependent DNA polymerase B family displayed an ion at a comparable distance from the catalytic site, but the position was clearly distinct from the non-catalytic ion-binding sites of RdRps.


Asunto(s)
Iones/química , ARN Polimerasa Dependiente del ARN/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Dominio Catalítico , Cationes/química , Cationes/metabolismo , Secuencia Conservada , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Iones/metabolismo , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Conformación Proteica , Virus ARN/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA