Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 344(3): 686-95, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23275065

RESUMEN

A hallmark of Alzheimer's disease (AD) pathology is the accumulation of brain amyloid ß-peptide (Aß), generated by γ-secretase-mediated cleavage of the amyloid precursor protein (APP). Therefore, γ-secretase inhibitors (GSIs) may lower brain Aß and offer a potential new approach to treat AD. As γ-secretase also cleaves Notch proteins, GSIs can have undesirable effects due to interference with Notch signaling. Avagacestat (BMS-708163) is a GSI developed for selective inhibition of APP over Notch cleavage. Avagacestat inhibition of APP and Notch cleavage was evaluated in cell culture by measuring levels of Aß and human Notch proteins. In rats, dogs, and humans, selectivity was evaluated by measuring plasma blood concentrations in relation to effects on cerebrospinal fluid (CSF) Aß levels and Notch-related toxicities. Measurements of Notch-related toxicity included goblet cell metaplasia in the gut, marginal-zone depletion in the spleen, reductions in B cells, and changes in expression of the Notch-regulated hairy and enhancer of split homolog-1 from blood cells. In rats and dogs, acute administration of avagacestat robustly reduced CSF Aß40 and Aß42 levels similarly. Chronic administration in rats and dogs, and 28-day, single- and multiple-ascending-dose administration in healthy human subjects caused similar exposure-dependent reductions in CSF Aß40. Consistent with the 137-fold selectivity measured in cell culture, we identified doses of avagacestat that reduce CSF Aß levels without causing Notch-related toxicities. Our results demonstrate the selectivity of avagacestat for APP over Notch cleavage, supporting further evaluation of avagacestat for AD therapy.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Oxadiazoles/farmacología , Sulfonamidas/farmacología , Adolescente , Adulto , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Células Cultivadas , Perros , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto Joven
2.
J Pharmacol Exp Ther ; 337(1): 75-82, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21205914

RESUMEN

The purpose of this study was to develop a mechanistic pharmacokinetic-pharmacodynamic (PK-PD) model to describe the effects of rifampicin on hepatic Cyp3a11 RNA, enzymatic activity, and triazolam pharmacokinetics. Rifampicin was administered to steroid and xenobiotic X receptor (SXR) humanized mice at 10 mg/kg p.o. (every day for 3 days) followed by triazolam (4 mg/kg p.o.) 24 h after the last dose of rifampicin. Rifampicin and triazolam concentrations and Cyp3a11 RNA expression and activity in the liver were measured over the 4-day period. Elevations in Cyp3a11 RNA expression were observed 24 h after the first dose of rifampicin, reaching a maximum (∼10 times baseline) after the third dose and were sustained until day 4 and began declining 48 h after the last rifampicin dose. Similar changes in enzymatic activity were also observed. The triazolam serum area under the curve (AUC) was 5-fold lower in mice pretreated with rifampicin, consistent with enzyme induction. The final PK-PD model incorporated rifampicin liver concentration as the driving force for the time-delayed Cyp3a11 induction governed by in vitro potency estimates, which in turn regulated the turnover of enzyme activity. The PK-PD model was able to recapitulate the delayed induction of Cyp3a11 mRNA and enzymatic activity by rifampicin. Furthermore, the model was able to accurately anticipate the reduction in the triazolam plasma AUC by integrating a ratio of the predicted induced enzyme activity and basal activity into the equations describing triazolam pharmacokinetics. In conjunction with the SXR humanized mouse model, this mathematical approach may serve as a tool for predicting clinically relevant drug-drug interactions via pregnane X receptor-mediated enzyme induction and possibly extended to other induction pathways (e.g., constitutive androstane receptor).


Asunto(s)
Citocromo P-450 CYP3A/biosíntesis , Proteínas de la Membrana/biosíntesis , Receptores de Esteroides/metabolismo , Rifampin/farmacología , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Humanos , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Receptor X de Pregnano , Rifampin/farmacocinética
4.
J Pharmacol Exp Ther ; 320(3): 1252-60, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17138862

RESUMEN

gamma-Hydroxybutyrate (GHB) is a potent sedative/hypnotic and drug of abuse. Tolerance develops to GHB's sedative/hypnotic effects. It is hypothesized that GHB tolerance may be mediated by alterations in central nervous system pharmacokinetics or neurotransmitter response. Rats were dosed daily with GHB (548 mg/kg s.c. q.d. for 5 days), and sleep time was measured as an index of behavioral tolerance. Plasma and brain GHB pharmacokinetics on days 1 and 5 were monitored using blood and microdialysis sampling. Extracellular (ECF) striatal dopamine levels were measured by microdialysis as a pharmacodynamic endpoint of tolerance. Pharmacokinetic (PK)/pharmacodynamic (PD) modeling was performed to describe the plasma and brain disposition using an indirect response model with inhibition of dopamine synthesis rate to describe the pharmacodynamic response. GHB plasma and brain ECF concentration versus time profiles following acute or chronic exposure were not significantly different. GHB sedative/hypnotic tolerance was observed by day 5. Acute GHB administration resulted in a decrease in striatal ECF dopamine (DA) levels compared with baseline levels. GHB tolerance was reflected by a 60% decrease in dopamine area under the curve (effect and baseline): acute, 10.1 +/- 15.3% basal DA/min/10(-3) versus chronic, 4.73 +/- 1.49% basal DA/min/10(-3) (p < 0.05, n = 5; unpaired Student's t test). The PK/PD model revealed an increase in the IC50 following chronic exposure indicating decreased dopaminergic sensitivity toward the inhibitory effects of GHB. Our findings indicate that GHB pharmacokinetics do not contribute to behavioral tolerance; however, changes in neurotransmitter responsiveness may suggest specific neurochemical pathways involved in the development and expression of tolerance.


Asunto(s)
Encéfalo/efectos de los fármacos , Dopamina/metabolismo , Tolerancia a Medicamentos , Líquido Extracelular/metabolismo , Hidroxibutiratos , Hipnóticos y Sedantes , Animales , Encéfalo/metabolismo , Hidroxibutiratos/sangre , Hidroxibutiratos/farmacocinética , Hidroxibutiratos/farmacología , Hipnóticos y Sedantes/sangre , Hipnóticos y Sedantes/farmacocinética , Hipnóticos y Sedantes/farmacología , Masculino , Microdiálisis , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos , Factores de Tiempo
5.
Pharm Res ; 23(9): 2067-77, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16952000

RESUMEN

PURPOSE: To investigate if gamma-Hydroxybutyrate (GHB) tolerance is mediated by alterations in GHB systemic pharmacokinetics, transport (blood brain barrier (BBB) and neuronal) or membrane fluidity. MATERIALS AND METHODS: GHB tolerance in rats was attained by repeated GHB administration (5.31 mmol/kg, s.c., QD for 5 days). GHB sedative/hypnotic effects were measured daily. GHB pharmacokinetics were determined on day 5. In separate groups, on day 6, in situ brain perfusion was performed to assess BBB transport alterations; or in vitro studies were performed (fluorescence polarization measurements of neuronal membrane fluidity or [3H]GABA neuronal accumulation). RESULTS: GHB sedative/hypnotic tolerance was observed by day 5. No significant GHB pharmacokinetic or BBB transport differences were observed between treated and control rats. Neuronal membrane preparations from GHB tolerant rats showed a significant decrease in fluorescence polarization (treated-0.320 +/- 0.009, n = 5; control-0.299 +/- 0.009, n = 5; p < 0.05). [3H]GABA neuronal transport Vmax was significantly increased in tolerant rats (2,110.66 +/- 91.06 pmol/mg protein/min vs control (1,612.68 +/- 176.03 pmol/mg protein/min; n = 7 p < 0.05). CONCLUSIONS: Short term GHB administration at moderate doses results in the development of tolerance which is not due to altered systemic pharmacokinetics or altered BBB transport, but might be due to enhanced membrane rigidity and increased GABA reuptake.


Asunto(s)
Anestésicos Intravenosos/farmacología , Anestésicos Intravenosos/farmacocinética , Barrera Hematoencefálica/efectos de los fármacos , Hipnóticos y Sedantes , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxibato de Sodio/farmacología , Oxibato de Sodio/farmacocinética , Animales , Área Bajo la Curva , Unión Competitiva/efectos de los fármacos , Transporte Biológico , Cromatografía Liquida , Tolerancia a Medicamentos , Técnicas In Vitro , Masculino , Espectrometría de Masas , Fluidez de la Membrana , Perfusión , Equilibrio Postural/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Temperatura , Ácido gamma-Aminobutírico/metabolismo
6.
J Pharmacol Exp Ther ; 304(1): 319-25, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12490607

RESUMEN

Nitric oxide (NO) and prostaglandins are inflammatory mediators produced during meningitis. The purpose of the present study was to pharmacologically inhibit cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) to 1) explore the prostaglandin contribution to blood-cerebrospinal fluid barrier permeability alterations and 2) elucidate the in vivo concentration relationship between prostaglandin E2 (PGE2) and NO during experimental meningitis. Intracisternal injection of lipopolysaccharides (LPSs, 200 microg) induced neuroinflammation. Rats were dosed with nimesulide (COX-2 inhibitor), aminoguanidine (iNOS inhibitor), or vehicle. Evans blue was used to assess blood-cerebrospinal fluid barrier permeability. Meningeal NO and cerebrospinal fluid PGE2 were assayed using conventional methods. (Results are expressed as mean +/- S.E.M. of 5-9 rats/group.) Nimesulide failed to prevent blood-cerebrospinal fluid barrier disruption [cerebrospinal fluid Evans blue (micrograms per milliliter): control, 0.22 +/- 0.22*; LPS, 11.58 +/- 0.66; LPS + nimesulide, 10.58 +/- 0.86; *p < 0.05; ANOVA]. Although nimesulide decreased PGE2 (picograms per microliter; p < 0.01) in LPS + nimesulide rats (13.9 +/- 1.96) versus LPS + vehicle (73.8 +/- 12.4), meningeal NO production (picomoles/30 min/10(6) cells; p < 0.01) increased unexpectedly in LPS + nimesulide rats (439 +/- 47) versus LPS + vehicle rats (211 +/- 31). In contrast, aminoguanidine inhibited meningeal NO (picomoles/30 min/10(6) cells; p < 0.005) in LPS + aminoguanidine (111 +/- 20) versus LPS (337 +/- 48) but had no effects (p > 0.05) on PGE2. The in vivo relationship between PGE2 and NO was mathematically described by a biphasic, bell-shaped curve (r2 = 0.42; n = 27 rats; p < 0.0001). Based on these results, inhibition of prostaglandin synthesis not only fails to prevent blood-cerebrospinal fluid barrier disruption during neuroinflammation and but also promotes increased meningeal NO production. The in vivo concentration relationship between PGE2 and NO is biphasic, suggesting that inhibition of COX-2 alone may promote NO toxicity through enhanced NO synthesis.


Asunto(s)
Meningitis/patología , Neuronas/patología , Óxido Nítrico/fisiología , Prostaglandinas/fisiología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprostona/líquido cefalorraquídeo , Guanidinas/farmacología , Isoenzimas/metabolismo , Lipopolisacáridos , Masculino , Meningitis/inducido químicamente , Óxido Nítrico/líquido cefalorraquídeo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/líquido cefalorraquídeo , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacocinética , Sulfonamidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...