Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4796-4811, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38285588

RESUMEN

Near-eye gaze estimation is a task that maps the recording of an eye captured by an adjacent camera to the direction of a person's gaze in space. In contrast to frame-based cameras, event cameras are characterized by high sensing rates, low latency, sparse asynchronous data outputs, and high dynamic range, which are well suited for recording the fast eye movements. However, algorithms and system designs that operate on frame-based cameras are not applicable to event-based data, due to the natural differences in the data characteristics. In this work, we study the pattern of near-eye event-based data streams and extract eye features to estimate gaze. First, by analyzing eye parts and movements, and harnessing the polar, spatial, and temporal distribution of the events, we introduce a real-time pipeline to extract pupil features. Second, we present a recurrent neural network with a proposed coordinate-to-angle loss function to accurately estimate gaze from pupil feature sequence. We demonstrated that our system achieves accurate real-time estimation with angular accuracy of 0.46 ° and update rates of 950 Hz, thus opening up avenues for novel applications. To our knowledge, this is the first system that operates only on event-based data to perform gaze estimation.

2.
Front Neurosci ; 16: 1010302, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507348

RESUMEN

Evolution has honed predatory skills in the natural world where localizing and intercepting fast-moving prey is required. The current generation of robotic systems mimics these biological systems using deep learning. High-speed processing of the camera frames using convolutional neural networks (CNN) (frame pipeline) on such constrained aerial edge-robots gets resource-limited. Adding more compute resources also eventually limits the throughput at the frame rate of the camera as frame-only traditional systems fail to capture the detailed temporal dynamics of the environment. Bio-inspired event cameras and spiking neural networks (SNN) provide an asynchronous sensor-processor pair (event pipeline) capturing the continuous temporal details of the scene for high-speed but lag in terms of accuracy. In this work, we propose a target localization system combining event-camera and SNN-based high-speed target estimation and frame-based camera and CNN-driven reliable object detection by fusing complementary spatio-temporal prowess of event and frame pipelines. One of our main contributions involves the design of an SNN filter that borrows from the neural mechanism for ego-motion cancelation in houseflies. It fuses the vestibular sensors with the vision to cancel the activity corresponding to the predator's self-motion. We also integrate the neuro-inspired multi-pipeline processing with task-optimized multi-neuronal pathway structure in primates and insects. The system is validated to outperform CNN-only processing using prey-predator drone simulations in realistic 3D virtual environments. The system is then demonstrated in a real-world multi-drone set-up with emulated event data. Subsequently, we use recorded actual sensory data from multi-camera and inertial measurement unit (IMU) assembly to show desired working while tolerating the realistic noise in vision and IMU sensors. We analyze the design space to identify optimal parameters for spiking neurons, CNN models, and for checking their effect on the performance metrics of the fused system. Finally, we map the throughput controlling SNN and fusion network on edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second even at constrained resource availability. This work may open new research directions by coupling multiple sensing and processing modalities inspired by discoveries in neuroscience to break fundamental trade-offs in frame-based computer vision.

3.
Nanotechnology ; 32(1): 012002, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679577

RESUMEN

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.

4.
Sci Rep ; 10(1): 5549, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32218495

RESUMEN

Stochastic resonance (SR) is an ingenious phenomenon observed in nature and in biological systems but has seen very few practical applications in engineering. It has been observed and analyzed in widely different natural phenomenon including in bio-organisms (e.g. Mechanoreceptor of crayfish) and in environmental sciences (e.g. the periodic occurrence of ice ages). The main idea behind SR seems quite unorthodox - it proposes that noise, that is intrinsically present in a system or is extrinsically added, can help enhance the signal power at the output, in a desired frequency range. Despite its promise and ubiquitous presence in nature, SR has not been successively harnessed in engineering applications. In this work, we demonstrate both experimentally as well as theoretically how the intrinsic threshold noise of an insulator-metal-transition (IMT) material can enable SR. We borrow inspiration from natural systems which use SR to detect and amplify low-amplitude signals, to demonstrate how a simple electrical circuit which uses an IMT device can exploit SR in engineering applications. We explore two such applications: one of them utilizes noise to correctly transmit signals corresponding to different vowel sounds akin to auditory nerves, without amplifying the amplitude of the input audio sound. This finds applications in cochlear implants where ultra-low power consumption is a primary requirement. The second application leverages the frequency response of SR, where the loss of resonance at out-of-band frequencies is used. We demonstrate how to provide frequency selectivity by tuning an extrinsically added noise to the system.

5.
Front Neurosci ; 13: 855, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456659

RESUMEN

As computational models inspired by the biological neural system, spiking neural networks (SNN) continue to demonstrate great potential in the landscape of artificial intelligence, particularly in tasks such as recognition, inference, and learning. While SNN focuses on achieving high-level intelligence of individual creatures, Swarm Intelligence (SI) is another type of bio-inspired models that mimic the collective intelligence of biological swarms, i.e., bird flocks, fish school and ant colonies. SI algorithms provide efficient and practical solutions to many difficult optimization problems through multi-agent metaheuristic search. Bridging these two distinct subfields of artificial intelligence has the potential to harness collective behavior and learning ability of biological systems. In this work, we explore the feasibility of connecting these two models by implementing a generalized SI model on SNN. In the proposed computing paradigm, we use SNNs to represent agents in the swarm and encode problem solutions with the spike firing rate and with spike timing. The coupled neurons communicate and modulate each other's action potentials through event-driven spikes and synchronize their dynamics around the states of optimal solutions. We demonstrate that such an SI-SNN model is capable of efficiently solving optimization problems, such as parameter optimization of continuous functions and a ubiquitous combinatorial optimization problem, namely, the traveling salesman problem with near-optimal solutions. Furthermore, we demonstrate an efficient implementation of such neural dynamics on an emerging hardware platform, namely ferroelectric field-effect transistor (FeFET) based spiking neurons. Such an emerging in-silico neuron is composed of a compact 1T-1FeFET structure with both excitatory and inhibitory inputs. We show that the designed neuromorphic system can serve as an optimization solver with high-performance and high energy-efficiency.

6.
Nat Commun ; 10(1): 3299, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341167

RESUMEN

The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Marcha , Nanotecnología , Robótica , Relojes Biológicos , Nanopartículas , Óxidos , Compuestos de Vanadio
7.
Front Neurosci ; 13: 525, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178689

RESUMEN

Recent advances in deep neural networks (DNNs) owe their success to training algorithms that use backpropagation and gradient-descent. Backpropagation, while highly effective on von Neumann architectures, becomes inefficient when scaling to large networks. Commonly referred to as the weight transport problem, each neuron's dependence on the weights and errors located deeper in the network require exhaustive data movement which presents a key problem in enhancing the performance and energy-efficiency of machine-learning hardware. In this work, we propose a bio-plausible alternative to backpropagation drawing from advances in feedback alignment algorithms in which the error computation at a single synapse reduces to the product of three scalar values. Using a sparse feedback matrix, we show that a neuron needs only a fraction of the information previously used by the feedback alignment algorithms. Consequently, memory and compute can be partitioned and distributed whichever way produces the most efficient forward pass so long as a single error can be delivered to each neuron. We evaluate our algorithm using standard datasets, including ImageNet, to address the concern of scaling to challenging problems. Our results show orders of magnitude improvement in data movement and 2× improvement in multiply-and-accumulate operations over backpropagation. Like previous work, we observe that any variant of feedback alignment suffers significant losses in classification accuracy on deep convolutional neural networks. By transferring trained convolutional layers and training the fully connected layers using direct feedback alignment, we demonstrate that direct feedback alignment can obtain results competitive with backpropagation. Furthermore, we observe that using an extremely sparse feedback matrix, rather than a dense one, results in a small accuracy drop while yielding hardware advantages. All the code and results are available under https://github.com/bcrafton/ssdfa.

8.
Front Neurosci ; 12: 210, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670508

RESUMEN

Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO2) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms.

9.
Sci Rep ; 8(1): 6120, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29651031

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
Sci Rep ; 7(1): 911, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28424457

RESUMEN

While Boolean logic has been the backbone of digital information processing, there exist classes of computationally hard problems wherein this paradigm is fundamentally inefficient. Vertex coloring of graphs, belonging to the class of combinatorial optimization, represents one such problem. It is well studied for its applications in data sciences, life sciences, social sciences and technology, and hence, motivates alternate, more efficient non-Boolean pathways towards its solution. Here we demonstrate a coupled relaxation oscillator based dynamical system that exploits insulator-metal transition in Vanadium Dioxide (VO2) to efficiently solve vertex coloring of graphs. Pairwise coupled VO2 oscillator circuits have been analyzed before for basic computing operations, but using complex networks of VO2 oscillators, or any other oscillators, for more complex tasks have been challenging in theory as well as in experiments. The proposed VO2 oscillator network harnesses the natural analogue between optimization problems and energy minimization processes in highly parallel, interconnected dynamical systems to approximate optimal coloring of graphs. We further indicate a fundamental connection between spectral properties of linear dynamical systems and spectral algorithms for graph coloring. Our work not only elucidates a physics-based computing approach but also presents tantalizing opportunities for building customized analog co-processors for solving hard problems efficiently.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...