Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 15: 897039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836548

RESUMEN

Thyroid hormones clearly play a role in the seasonal regulation of reproduction, but any role they might play in song behavior and the associated seasonal neuroplasticity in songbirds remains to be elucidated. To pursue this question, we first established seasonal patterns in the expression of thyroid hormone regulating genes in male European starlings employing in situ hybridization methods. Thyroid hormone transporter LAT1 expression in the song nucleus HVC was elevated during the photosensitive phase, pointing toward an active role of thyroid hormones during this window of possible neuroplasticity. In contrast, DIO3 expression was high in HVC during the photostimulated phase, limiting the possible effect of thyroid hormones to maintain song stability during the breeding season. Next, we studied the effect of hypothyroidism on song behavior and neuroplasticity using in vivo MRI. Both under natural conditions as with methimazole treatment, circulating thyroid hormone levels decreased during the photosensitive period, which coincided with the onset of neuroplasticity. This inverse relationship between thyroid hormones and neuroplasticity was further demonstrated by the negative correlation between plasma T3 and the microstructural changes in several song control nuclei and cerebellum. Furthermore, maintaining hypothyroidism during the photostimulated period inhibited the increase in testosterone, confirming the role of thyroid hormones in activating the hypothalamic-pituitary-gonadal (HPG) axis. The lack of high testosterone levels influenced the song behavior of hypothyroid starlings, while the lack of high plasma T4 during photostimulation affected the myelination of several tracts. Potentially, a global reduction of circulating thyroid hormones during the photosensitive period is necessary to lift the brake on neuroplasticity imposed by the photorefractory period, whereas local fine-tuning of thyroid hormone concentrations through LAT1 could activate underlying neuroplasticity mechanisms. Whereas, an increase in circulating T4 during the photostimulated period potentially influences the myelination of several white matter tracts, which stabilizes the neuroplastic changes. Given the complexity of thyroid hormone effects, this study is a steppingstone to disentangle the influence of thyroid hormones on seasonal neuroplasticity.

2.
Gen Comp Endocrinol ; 247: 26-33, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28390960

RESUMEN

Thyroid hormones (THs) are crucial for brain development and maturation in all vertebrates. Especially during pre- and perinatal development, disruption of TH signaling leads to a multitude of neurological deficits. Many animal models provided insight in the role of THs in brain development, but specific data on how they affect the brain's ability to learn and adapt depending on environmental stimuli are rather limited. In this review, we focus on a number of learning processes like spatial learning, fear conditioning, vocal learning and imprinting behavior and on how abnormal TH signaling during development shapes subsequent performance. It is clear from multiple studies that TH deprivation leads to defects in learning on all fronts, and interestingly, changes in local expression of the TH activator deiodinase type 2 seem to have an important role. Taking into account that THs are regulated in a very space-specific manner, there is thus increasing pressure to investigate more local TH regulators as potential factors involved in neuroplasticity. As these learning processes are also important for proper adult human functioning, further elucidating the role of THs in developmental neuroplasticity in various animal models is an important field for advancing both fundamental and applied knowledge on human brain function.


Asunto(s)
Aprendizaje , Plasticidad Neuronal , Hormonas Tiroideas/metabolismo , Animales , Miedo , Humanos , Memoria , Actividad Motora
3.
Gen Comp Endocrinol ; 240: 91-102, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27693816

RESUMEN

The zebra finch (Taeniopygia guttata) song control system consists of several series of interconnected brain nuclei that undergo marked changes during ontogeny and sexual development, making it an excellent model to study developmental neuroplasticity. Despite the demonstrated influence of hormones such as sex steroids on this phenomenon, thyroid hormones (THs) - an important factor in neural development and maturation - have not been studied in this regard. We used in situ hybridization to compare the expression of TH transporters, deiodinases and receptors between both sexes during all phases of song development in male zebra finch. Comparisons were made in four song control nuclei: Area X, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), HVC (used as proper name) and the robust nucleus of the arcopallium (RA). Most genes regulating TH action are expressed in these four nuclei at early stages of development. However, while general expression levels decrease with age, the activating enzyme deiodinase type 2 remains highly expressed in Area X, HVC and RA in males, but not in females, until 90days post-hatch (dph), which marks the end of sensorimotor learning. Furthermore, the L-type amino acid transporter 1 and TH receptor beta show elevated expression in male HVC and RA respectively compared to surrounding tissue until adulthood. Differences compared to surrounding tissue and between sexes for the other TH regulators were minor. These developmental changes are accompanied by a strong local increase in vascularization in the male RA between 20 and 30dph but not in Area X or HVC. Our results suggest that local regulation of TH signaling is an important factor in the development of the song control nuclei during the song learning phase and that TH activation by DIO2 is a key player in this process.


Asunto(s)
Pinzones/crecimiento & desarrollo , Pinzones/genética , Regulación del Desarrollo de la Expresión Génica , Caracteres Sexuales , Hormonas Tiroideas/metabolismo , Vocalización Animal/fisiología , Análisis de Varianza , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Femenino , Yoduro Peroxidasa/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Neovascularización Fisiológica/genética , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...