Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Gut Microbes ; 16(1): 2335879, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695302

RESUMEN

Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.


Asunto(s)
Bacterias , Endocannabinoides , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Endocannabinoides/metabolismo , Colon/microbiología , Colon/metabolismo , Íleon/microbiología , Íleon/metabolismo , Ácidos Grasos Omega-3/metabolismo , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología , Suplementos Dietéticos , Adulto , Masculino
2.
Nat Commun ; 15(1): 3431, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654015

RESUMEN

The gut microbiota modulates response to hormonal treatments in prostate cancer (PCa) patients, but whether it influences PCa progression remains unknown. Here, we show a reduction in fecal microbiota alpha-diversity correlating with increase tumour burden in two distinct groups of hormonotherapy naïve PCa patients and three murine PCa models. Fecal microbiota transplantation (FMT) from patients with high PCa volume is sufficient to stimulate the growth of mouse PCa revealing the existence of a gut microbiome-cancer crosstalk. Analysis of gut microbial-related pathways in mice with aggressive PCa identifies three enzymes responsible for the metabolism of long-chain fatty acids (LCFA). Supplementation with LCFA omega-3 MAG-EPA is sufficient to reduce PCa growth in mice and cancer up-grading in pre-prostatectomy PCa patients correlating with a reduction of gut Ruminococcaceae in both and fecal butyrate levels in PCa patients. This suggests that the beneficial effect of omega-3 rich diet is mediated in part by modulating the crosstalk between gut microbes and their metabolites in men with PCa.


Asunto(s)
Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/dietoterapia , Neoplasias de la Próstata/microbiología , Animales , Humanos , Ratones , Heces/microbiología , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/administración & dosificación , Ratones Endogámicos C57BL , Ácidos Grasos Insaturados/metabolismo
3.
Sci Rep ; 13(1): 15702, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735572

RESUMEN

The gut microbiota and the endocannabinoidome (eCBome) play important roles in regulating energy homeostasis, and both are closely linked to dietary habits. However, the complex and compositional nature of these variables has limited our understanding of their interrelationship. This study aims to decipher the interrelation between dietary intake and the gut microbiome-eCBome axis using two different approaches for measuring dietary intake: one based on whole food and the other on macronutrient intakes. We reveal that food patterns, rather than macronutrient intakes, were associated with the gut microbiome-eCBome axis in a sample of healthy men and women (n = 195). N-acyl-ethanolamines (NAEs) and gut microbial families were correlated with intakes of vegetables, refined grains, olive oil and meats independently of adiposity and energy intakes. Specifically, higher intakes in vegetables and olive oil were associated with increased relative abundance of Clostridiaceae, Veillonellaceae and Peptostreptococaceae, decreased relative abundance of Acidominococaceae, higher circulating levels of NAEs, and higher HDL and LDL cholesterol levels. Our findings highlight the relative importance of food patterns in determining the gut microbiome-eCBome axis. They emphasize the importance of recognizing the contribution of dietary habits in these systems to develop personalized dietary interventions for preventing and treating metabolic disorders through this axis.


Asunto(s)
Antígenos de Grupos Sanguíneos , Microbioma Gastrointestinal , Masculino , Humanos , Femenino , Aceite de Oliva , Dieta , Ingestión de Alimentos , Verduras , Etanolaminas
4.
mSystems ; 8(4): e0053123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37404032

RESUMEN

With the concomitant advances in both the microbiome and machine learning fields, the gut microbiome has become of great interest for the potential discovery of biomarkers to be used in the classification of the host health status. Shotgun metagenomics data derived from the human microbiome is composed of a high-dimensional set of microbial features. The use of such complex data for the modeling of host-microbiome interactions remains a challenge as retaining de novo content yields a highly granular set of microbial features. In this study, we compared the prediction performances of machine learning approaches according to different types of data representations derived from shotgun metagenomics. These representations include commonly used taxonomic and functional profiles and the more granular gene cluster approach. For the five case-control datasets used in this study (Type 2 diabetes, obesity, liver cirrhosis, colorectal cancer, and inflammatory bowel disease), gene-based approaches, whether used alone or in combination with reference-based data types, allowed improved or similar classification performances as the taxonomic and functional profiles. In addition, we show that using subsets of gene families from specific functional categories of genes highlight the importance of these functions on the host phenotype. This study demonstrates that both reference-free microbiome representations and curated metagenomic annotations can provide relevant representations for machine learning based on metagenomic data. IMPORTANCE Data representation is an essential part of machine learning performance when using metagenomic data. In this work, we show that different microbiome representations provide varied host phenotype classification performance depending on the dataset. In classification tasks, untargeted microbiome gene content can provide similar or improved classification compared to taxonomical profiling. Feature selection based on biological function also improves classification performance for some pathologies. Function-based feature selection combined with interpretable machine learning algorithms can generate new hypotheses that can potentially be assayed mechanistically. This work thus proposes new approaches to represent microbiome data for machine learning that can potentiate the findings associated with metagenomic data.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Humanos , Diabetes Mellitus Tipo 2/genética , Microbiota/genética , Metagenoma , Microbioma Gastrointestinal/genética , Fenotipo
5.
JAC Antimicrob Resist ; 5(2): dlad026, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36968950

RESUMEN

Objectives: To characterize vancomycin-resistance vanD gene clusters and potential vanD-carrying bacteria in the intestinal microbiota of healthy volunteers exposed or not to ß-lactam antibiotics. Methods: Stool samples were collected before and after 7 days of cefprozil ß-lactam antibiotic exposure of 18 participants and six control participants who were not exposed to the antibiotic at the same time points. Metagenomic sequencing and culture-enriched metagenomic sequencing (with and without ß-lactam selection) were used to characterize vanD gene clusters and determine potential vanD-carrying bacteria. Alteration by antimicrobials was also examined. Results: Culture enrichment allowed detection of vanD genes in a large number of participants (11/24; 46%) compared to direct metagenomics (2/24; 8%). vanD genes were detected in stool cultures only following ß-lactam exposure, either after ß-lactam treatment of participants or after culture of stools with ß-lactam selection. Six types of vanD gene clusters were identified. Two types of vanD cluster highly similar to those of enterococci were found in two participants. Other vanD genes or vanD clusters were nearly identical to those identified in commensal anaerobic bacteria of the families Lachnospiraceae and Oscillospiraceae and/or bordered by genomic sequences similar or related to these anaerobes, suggesting that they are the origin or carriers of vanD. Conclusions: This study showed that culture-enriched metagenomics allowed detection of vanD genes not detected by direct metagenomics and revealed collateral enrichment of bacteria containing vancomycin-resistance vanD genes following exposure to ß-lactams, with a higher prevalence of the most likely gut commensal anaerobes carrying vanD. These commensal anaerobes could be the reservoir of vanD genes carried by enterococci.

6.
Function (Oxf) ; 4(2): zqac069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778746

RESUMEN

We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.


Asunto(s)
Ácidos Grasos Omega-3 , Hígado Graso , Resistencia a la Insulina , Ratones , Animales , Hígado Graso/tratamiento farmacológico , Ratones Transgénicos , Suplementos Dietéticos
7.
Microbiome ; 11(1): 26, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774515

RESUMEN

BACKGROUND: Bioactive lipids produced by human cells or by the gut microbiota might play an important role in health and disease. Dietary intakes are key determinants of the gut microbiota, its production of short-chain (SCFAs) and branched-chain fatty acids (BCFAs), and of the host endocannabinoidome signalling, which are all involved in metabolic diseases. This hypothesis-driven longitudinal fixed sequence nutritional study, realized in healthy participants, was designed to determine if a lead-in diet affects the host response to a short-term dietary intervention. Participants received a Mediterranean diet (MedDiet) for 3 days, a 13-day lead-in controlled diet reflecting the average Canadian dietary intake (CanDiet), and once again a MedDiet for 3 consecutive days. Fecal and blood samples were collected at the end of each dietary phase to evaluate alterations in gut microbiota composition and plasma levels of endocannabinoidome mediators, SCFAs, and BCFAs. RESULTS: We observed an immediate and reversible modulation of plasma endocannabinoidome mediators, BCFAs, and some SCFAs in response to both diets. BCFAs were more strongly reduced by the MedDiet when the latter was preceded by the lead-in CanDiet. The gut microbiota response was also immediate, but not all changes due to the CanDiet were reversible following a short dietary MedDiet intervention. Higher initial microbiome diversity was associated with reduced microbiota modulation after short-term dietary interventions. We also observed that BCFAs and 2-monoacylglycerols had many, but distinct, correlations with gut microbiota composition. Several taxa modulated by dietary intervention were previously associated to metabolic disorders, warranting the need to control for recent diet in observational association studies. CONCLUSIONS: Our results indicate that lipid mediators involved in the communication between the gut microbiota and host metabolism exhibit a rapid response to dietary changes, which is also the case for some, but not all, microbiome taxa. The lead-in diet influenced the gut microbiome and BCFA, but not the endocannabinoidome, response to the MedDiet. A higher initial microbiome diversity favored the stability of the gut microbiota in response to dietary changes. This study highlights the importance of considering the previous diet in studies relating the gut microbiome with lipid signals involved in host metabolism. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Canadá , Dieta , Ácidos Grasos
8.
Front Immunol ; 13: 1028412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439185

RESUMEN

Dietary micronutrients act at the intestinal level, thereby influencing microbial communities, the host endocannabinoidome, and immune and anti-oxidative response. Selenium (Se) is a trace element with several health benefits. Indeed, Se plays an important role in the regulation of enzymes with antioxidative and anti-inflammatory activity as well as indicators of the level of oxidative stress, which, together with chronic low-grade inflammation, is associated to obesity. To understand how Se variations affect diet-related metabolic health, we fed female and male mice for 28 days with Se-depleted or Se-enriched diets combined with low- and high-fat/sucrose diets. We quantified the plasma and intestinal endocannabinoidome, profiled the gut microbiota, and measured intestinal gene expression related to the immune and the antioxidant responses in the intestinal microenvironment. Overall, we show that intestinal segment-specific microbiota alterations occur following high-fat or low-fat diets enriched or depleted in Se, concomitantly with modifications of circulating endocannabinoidome mediators and changes in cytokine and antioxidant enzyme expression. Specifically, Se enrichment was associated with increased circulating plasma levels of 2-docosahexaenoyl-glycerol (2-DHG), a mediator with putative beneficial actions on metabolism and inflammation. Others eCBome mediators also responded to the diets. Concomitantly, changes in gut microbiota were observed in Se-enriched diets following a high-fat diet, including an increase in the relative abundance of Peptostreptococcaceae and Lactobacillaceae. With respect to the intestinal immune response and anti-oxidative gene expression, we observed a decrease in the expression of proinflammatory genes Il1ß and Tnfα in high-fat Se-enriched diets in caecum, while in ileum an increase in the expression levels of the antioxidant gene Gpx4 was observed following Se depletion. The sex of the animal influenced the response to the diet of both the gut microbiota and endocannabinoid mediators. These results identify Se as a regulator of the gut microbiome and endocannabinoidome in conjunction with high-fat diet, and might be relevant to the development of new nutritional strategies to improve metabolic health and chronic low-grade inflammation associated to metabolic disorders.


Asunto(s)
Microbioma Gastrointestinal , Selenio , Ratones , Masculino , Femenino , Animales , Microbioma Gastrointestinal/fisiología , Selenio/farmacología , Antioxidantes , Dieta Alta en Grasa/efectos adversos , Inflamación
9.
Sci Rep ; 12(1): 8568, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595747

RESUMEN

The extended endocannabinoid system, also termed endocannabinoidome, participates in multiple metabolic functions in health and disease. Physical activity can both have an acute and chronic impact on endocannabinoid mediators, as does diet. In this crossover randomized controlled study, we investigated the influence of diet on the peripheral response to acute maximal aerobic exercise in a sample of active adult women (n = 7) with no underlying metabolic conditions. We compared the impact of 7-day standardized Mediterranean diet (MedDiet) and control diet inspired by Canadian macronutrient intake (CanDiet) on endocannabinoidome and short-chain fatty acid metabolites post maximal aerobic exercise. Overall, plasmatic endocannabinoids, their congeners and some polyunsaturated fatty acids increased significantly post maximal aerobic exercise upon cessation of exercise and recovered their initial values within 1 h after exercise. Most N-acylethanolamines and polyunsaturated fatty acids increased directly after exercise when the participants had consumed the MedDiet, but not when they had consumed the CanDiet. This impact was different for monoacylglycerol endocannabinoid congeners, which in most cases reacted similarly to acute exercise while on the MedDiet or the CanDiet. Fecal microbiota was only minimally affected by the diet in this cohort. This study demonstrates that endocannabinoidome mediators respond to acute maximal aerobic exercise in a way that is dependent on the diet consumed in the week prior to exercise.


Asunto(s)
Dieta Mediterránea , Endocannabinoides , Adulto , Canadá , Endocannabinoides/metabolismo , Ejercicio Físico , Heces , Femenino , Humanos
10.
Elife ; 112022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245177

RESUMEN

Sustained exposure to a young systemic environment rejuvenates aged organisms and promotes cellular function. However, due to the intrinsic complexity of tissues it remains challenging to pinpoint niche-independent effects of circulating factors on specific cell populations. Here, we describe a method for the encapsulation of human and mouse skeletal muscle progenitors in diffusible polyethersulfone hollow fiber capsules that can be used to profile systemic aging in vivo independent of heterogeneous short-range tissue interactions. We observed that circulating long-range signaling factors in the old systemic environment lead to an activation of Myc and E2F transcription factors, induce senescence, and suppress myogenic differentiation. Importantly, in vitro profiling using young and old serum in 2D culture does not capture all pathways deregulated in encapsulated cells in aged mice. Thus, in vivo transcriptomic profiling using cell encapsulation allows for the characterization of effector pathways of systemic aging with unparalleled accuracy.


Asunto(s)
Células Satélite del Músculo Esquelético , Células Madre , Envejecimiento , Animales , Diferenciación Celular , Encapsulación Celular , Ratones , Músculo Esquelético/metabolismo , Células Madre/metabolismo , Transcriptoma
11.
J Nutr ; 152(1): 94-106, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510208

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small noncoding RNAs involved in posttranscriptional regulation. miRNAs can be secreted and found in many body fluids, and although they are particularly abundant in breastmilk, their functions remain elusive. Human milk (HM) miRNAs start to raise considerable interest, but a comprehensive understanding of the repertoire and expression profiles along lactation has not been well characterized. OBJECTIVES: This study aimed to characterize the longitudinal profile of HM miRNA between the second week and third month postpartum. METHODS: We used a new sensitive technology to measure HM miRNAs in a cohort of 44 French mothers [mean ± SD age: 31 ± 3.5; BMI (in kg/m2) 21.8 ± 2.3] who delivered at term and provided HM samples at 3 time points (17 ± 3 d, 60 ± 3 d, and 90 ± 3 d) during follow-up visits. RESULTS: We detected 685 miRNAs, of which 35 showed a high and stable expression along the lactation period analyzed. We also described for the first time a set of 11 miRNAs with a dynamic expression profile. To gain insight into the potential functional relevance of this set of miRNAs, we selected miR-3126 and miR-3184 to treat undifferentiated Caco-2 human intestinal cells and then assessed differentially expressed genes and modulation of related biological pathways. CONCLUSIONS: Overall, our study provides new insights into HM miRNA composition and, to our knowledge, the first description of its longitudinal dynamics in mothers who delivered at term. Our in vitro results obtained in undifferentiated Caco-2 human intestinal cells transfected with HM miRNAs also provide further support to the hypothesized mother-to-neonate signaling role of HM miRNAs. This trial was registered at clinicaltrials.gov as NCT01894893.


Asunto(s)
MicroARNs , Adulto , Lactancia Materna , Células CACO-2 , Femenino , Humanos , Lactancia , MicroARNs/genética , MicroARNs/metabolismo , Leche Humana/metabolismo , Madres
12.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33941312

RESUMEN

Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.


Asunto(s)
Hematopoyesis Clonal/genética , Reparación del ADN , Longevidad/genética , Secuenciación Completa del Genoma/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Antecedentes Genéticos , Humanos , Italia , Masculino , Persona de Mediana Edad , Mutación , Secuenciación Completa del Genoma/métodos
13.
Cells ; 10(4)2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920695

RESUMEN

Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.


Asunto(s)
Encéfalo/metabolismo , Endocannabinoides/metabolismo , Ejercicio Físico/fisiología , Microbioma Gastrointestinal , Humanos , Inflamación/patología , Transducción de Señal
14.
Environ Microbiol ; 23(6): 2955-2968, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33760341

RESUMEN

Nostoc (Nostocales, Cyanobacteria) has a global distribution in the Polar Regions. However, the genomic diversity of Nostoc is little known and there are no genomes available for polar Nostoc. Here we carried out the first genomic analysis of the Nostoc commune morphotype with a recent sample from the High Arctic and a herbarium specimen collected during the British Arctic Expedition (1875-76). Comparisons of the polar genomes with 26 present-day non-polar members of the Nostocales family highlighted that there are pronounced genetic variations among Nostoc strains and species. Osmoprotection and other stress genes were found in all Nostoc strains, but the two Arctic strains had markedly higher numbers of biosynthetic gene clusters for uncharacterised non-ribosomal peptide synthetases, suggesting a high diversity of secondary metabolites. Since viral-host interactions contribute to microbial diversity, we analysed the CRISPR-Cas systems in the Arctic and two temperate Nostoc species. There were a large number of unique repeat-spacer arrays in each genome, indicating diverse histories of viral attack. All Nostoc strains had a subtype I-D system, but the polar specimens also showed evidence of a subtype I-B system that has not been previously reported in cyanobacteria, suggesting diverse cyanobacteria-virus interactions in the Arctic.


Asunto(s)
Sistemas CRISPR-Cas , Nostoc , Genómica , Familia de Multigenes , Nostoc/genética , Filogenia
15.
Sci Rep ; 10(1): 15975, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994521

RESUMEN

The endocannabinoidome encompasses several fatty acid (FA)-derived mediators, including the endocannabinoid anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), which served as targets for anti-obesity drug development, and their congener N-acyl-ethanolamines (NAEs) and 2-monoacyl-glycerols (2­MAGs), which are involved in food intake and energy metabolism. Body weight and fat distribution have been suggested as determinants of peripheral endocannabinoid levels. We aimed at investigating factors, beyond body fat composition, that are associated with circulating NAE and 2-MAG levels in a heterogeneous human population. Plasma NAEs and 2-MAGs were measured using LC-MS/MS in a cross-sectional sample of healthy men and women (n = 195) covering a wide range of BMI and individuals before and after a 2-day Mediterranean diet (n = 21). Circulating levels of all 2-MAGs and NAEs, other than N-oleoyl-ethanolamine (OEA), correlated with body fat mass and visceral adipose tissue (0.26 < r < 0.54). NAE levels were elevated in individuals with elevated fat mass, while 2-MAGs were increased in individuals with predominantly visceral body fat distribution. Dietary intakes of specific FAs were associated with 2-AG and omega-3-FA-derived NAEs or 2-MAGs, irrespective of the body fat distribution. Some gut bacterial families (e.g. Veillonellaceae, Peptostreptococcaceae and Akkermansiaceae) were associated with variations in most NAEs or omega-3-FA-derived 2­MAGs, independently of fat mass and dietary FA intake. Finally, a 2-day Mediterranean diet intervention increased circulating levels of NAEs and 2-MAGs in agreement with changes in FA intake (p < 0.01). Self-reported intake and short-term dietary intervention increased in oleic acid and EPA and DHA intake as well as certain gut microbiota taxa are associated to circulating NAEs and 2­MAGs independently of adiposity measures, thus highlighting the potential importance of these variables in determining endocannabinoidome signaling in humans.


Asunto(s)
Ácidos Araquidónicos/sangre , Bacterias/clasificación , Dieta Mediterránea , Grasas de la Dieta/administración & dosificación , Endocannabinoides/sangre , Ácidos Grasos/administración & dosificación , Glicéridos/sangre , Alcamidas Poliinsaturadas/sangre , Adulto , Anciano , Anciano de 80 o más Años , Bacterias/genética , Bacterias/aislamiento & purificación , Distribución de la Grasa Corporal , Cromatografía Liquida , Estudios Transversales , Grasas de la Dieta/farmacología , Metabolismo Energético , Ácidos Grasos/farmacología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Espectrometría de Masas en Tándem , Adulto Joven
16.
BMC Biol ; 18(1): 51, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32438927

RESUMEN

BACKGROUND: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS: We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Humano , Arqueología , ADN Antiguo/análisis , Humanos , Italia , Población Blanca
17.
Am J Physiol Endocrinol Metab ; 318(6): E965-E980, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32228321

RESUMEN

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Asunto(s)
Antocianinas/farmacología , Arándanos Azules (Planta) , Frutas , Microbioma Gastrointestinal/efectos de los fármacos , Resistencia a la Insulina , Obesidad/metabolismo , Extractos Vegetales/farmacología , Proantocianidinas/farmacología , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa , Sacarosa en la Dieta , Trasplante de Microbiota Fecal , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología
18.
J Infect Dis ; 221(5): 701-706, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30942884

RESUMEN

BACKGROUND: In 2017, the Democratic Republic of the Congo (DRC) recorded its eighth Ebola virus disease (EVD) outbreak, approximately 3 years after the previous outbreak. METHODS: Suspect cases of EVD were identified on the basis of clinical and epidemiological information. Reverse transcription-polymerase chain reaction (RT-PCR) analysis or serological testing was used to confirm Ebola virus infection in suspected cases. The causative virus was later sequenced from a RT-PCR-positive individual and assessed using phylogenetic analysis. RESULTS: Three probable and 5 laboratory-confirmed cases of EVD were recorded between 27 March and 1 July 2017 in the DRC. Fifty percent of cases died from the infection. EVD cases were detected in 4 separate areas, resulting in > 270 contacts monitored. The complete genome of the causative agent, a variant from the Zaireebolavirus species, denoted Ebola virus Muyembe, was obtained using next-generation sequencing. This variant is genetically closest, with 98.73% homology, to the Ebola virus Mayinga variant isolated from the first DRC outbreaks in 1976-1977. CONCLUSION: A single spillover event into the human population is responsible for this DRC outbreak. Human-to-human transmission resulted in limited dissemination of the causative agent, a novel Ebola virus variant closely related to the initial Mayinga variant isolated in 1976-1977 in the DRC.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/genética , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/epidemiología , Adolescente , Adulto , República Democrática del Congo/epidemiología , Ebolavirus/inmunología , Femenino , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Filogenia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Pruebas Serológicas , Adulto Joven
19.
J Lipid Res ; 61(1): 70-85, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31690638

RESUMEN

The gut microbiota is a unique ecosystem of microorganisms interacting with the host through several biochemical mechanisms. The endocannabinoidome (eCBome), a complex signaling system including the endocannabinoid system, approximately 50 receptors and metabolic enzymes, and more than 20 lipid mediators with important physiopathologic functions, modulates gastrointestinal tract function and may mediate host cell-microbe communications there. Germ-free (GF) mice, which lack an intestinal microbiome and so differ drastically from conventionally raised (CR) mice, offer a unique opportunity to explore the eCBome in a microbe-free model and in the presence of a reintroduced functional gut microbiome through fecal microbiota transplant (FMT). We aimed to gain direct evidence for a link between the microbiome and eCBome systems by investigating eCBome alterations in the gut in GF mice before and after FMT. Basal eCBome gene expression and lipid profiles were measured in various segments of the intestine of GF and CR mice at juvenile and adult ages using targeted quantitative PCR transcriptomics and LC-MS/MS lipidomics. GF mice exhibited age-dependent modifications in intestinal eCBome gene expression and lipid mediator levels. FMT from CR donor mice to age-matched GF male mice reversed several of these alterations, particularly in the ileum and jejunum, after only 1 week, demonstrating that the gut microbiome directly impacts the host eCBome and providing a cause-effect relationship between the presence or absence of intestinal microbes and eCBome signaling. These results open the way to new studies investigating the mechanisms through which intestinal microorganisms exploit eCBome signaling to exert some of their physiopathologic functions.


Asunto(s)
Endocannabinoides/metabolismo , Microbioma Gastrointestinal , Intestinos/química , Intestinos/microbiología , Transducción de Señal , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
20.
ALTEX ; 37(1): 85-94, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31707420

RESUMEN

Significant efforts are currently being made to move toxicity testing from animal experimentation to human relevant, mechanism-based approaches. In this context, the identification of molecular target(s) responsible for mechanisms of action is an essential step. Inspired by the recent concept of polypharmacology (the ability of drugs to interact with multiple targets) we argue that whole proteome virtual screening might become a breakthrough tool in toxicology reflecting the real complexity of chemical-biological interactions. Therefore, we investigated the value of performing ligand-protein binding prediction screening across the full proteome to identify new mechanisms of action for food chemicals. We applied the new approach to make a broader comparison between bisphenol A (BPA) (food-packaging chemical) and the endogenous estrogen, 17ß-estradiol (EST). Applying a novel high-throughput ligand-protein binding prediction tool (BioGPS) by the Amazon Web Services (AWS) cloud (to speed-up the calculation), we investigated the value of performing in silico screening across the full proteome (all human and rodent x-ray protein structures available in the Protein Data Bank). The strong correlation between in silico predictions and available in vitro data demonstrates the high predictive power of the method used. The most striking results obtained was that BPA was predicted to bind to many more proteins than the ones already known, most of which were common to EST. Our findings provide a new and unprecedented insight on the complexity of chemical-protein interactions, highlighting the binding promiscuity of BPA and its broader similarity compared to the female sex hormone, EST.


Asunto(s)
Compuestos de Bencidrilo/química , Fenoles/química , Proteínas/química , Compuestos de Bencidrilo/metabolismo , Química Computacional , Bases de Datos de Proteínas , Estrógenos no Esteroides/química , Fenoles/metabolismo , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA