RESUMEN
Roses have been domesticated since antiquity for their therapeutic, cosmetic, and ornamental properties. Their floral fragrance has great economic value, which has influenced the production of rose varieties. The production of rose water and essential oil is one of the most lucrative activities, supplying bioactive molecules to the cosmetic, pharmaceutical, and therapeutic industries. In recent years, major advances in molecular genetics, genomic, and biochemical tools have paved the way for the identification of molecules that make up the specific fragrance of various rose cultivars. The aim of this review is to highlight current knowledge on metabolite profiles, and more specifically on fragrance compounds, as well as the specificities and differences between rose species and cultivars belonging to different rose sections and how they contribute to modern roses fragrance.
Asunto(s)
Genómica , Odorantes , Flores/genéticaRESUMEN
Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 µmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 µmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.
Asunto(s)
Antocianinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Pigmentación/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
One of the well-known floral abnormalities in flowering plants is the double-flower phenotype, which corresponds to flowers that develop extra petals, sometimes even containing entire flowers within flowers. Because of their highly priced ornamental value, spontaneous double-flower variants have been found and selected for in a wide range of ornamental species. Previously, double flower formation in roses was associated with a restriction of AGAMOUS expression domain toward the centre of the meristem, leading to extra petals. Here, we characterized the genomic region containing the mutation associated with the switch from simple to double flowers in the rose. An APETALA2-like gene (RcAP2L), a member of the Target Of EAT-type (TOE-type) subfamily, lies within this interval. In the double flower rose, two alleles of RcAP2L are present, one of which harbours a transposable element inserted into intron 8. This insertion leads to the creation of a miR172 resistant RcAP2L variant. Analyses of the presence of this variant in a set of simple and double flower roses demonstrate a correlation between the presence of this allele and the double flower phenotype. These data suggest a role of this miR172 resistant RcAP2L variant in regulating RcAGAMOUS expression and double flower formation in Rosa sp.
Asunto(s)
Flores/metabolismo , MicroARNs/metabolismo , Rosa/metabolismo , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Rosa/genéticaRESUMEN
Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.
Asunto(s)
Genoma de Planta , Rosa/genética , Domesticación , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Proteínas de Plantas/genética , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodosRESUMEN
Phyllody is a flower abnormality in which leaf-like structures replace flower organs in all whorls. Here, we investigated the origin and the molecular mechanism of phyllody phenotype in Rosa chinensis cv. Viridiflora, an ancient naturally occurring Chinese mutant cultivar. Reciprocal grafting experiments and microscopy analyses, demonstrated that the phyllody phenotype in Viridiflora is not associated with phytoplasmas infection. Transcriptome comparisons by the mean of RNA-Seq identified 672 up-regulated and 666 down-regulated genes in Viridiflora compared to its closely related genotype R. chinensis cv. Old Blush. A fraction of these genes are putative homologs of genes known to be involved in flower initiation and development. We show that in flower whorl 2 of Viridiflora, a down-regulation of the floral organ identity genes RcPISTILLATA (RcPI), RcAPETALA3 (RcAP3) and RcSEPALLATA3 (RcSEP3), together with an up-regulation of the putative homolog of the gene SUPPRESSOR of OVEREXPRESSION of CONSTANS1 (RcSOC1) are likely at the origin of the loss of petal identity and leaf-like structures formation. In whorl 3 of Viridiflora, ectopic expression of RcAPETALA2 (RcAP2) along with the down regulation of RcPI, RcAP3, and RcSEP3 is associated with loss of stamens identity and leaf-like structures formation. In whorl 4, the ectopic expression of RcAP2 associated with a down-regulation of RcSEP3 and of the C-class gene RcAGAMOUS correlate with loss of pistil identity. The latter also suggested the antagonist effect between the A and C class genes in the rose. Together, these data suggest that modified expression of the ABCE flower organ identity genes is associated with the phyllody phenotype in the rose Viridiflora and that these genes are important for normal flower organs development.
RESUMEN
The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta.
Asunto(s)
Monoterpenos/metabolismo , Odorantes , Plastidios/enzimología , Pirofosfatasas/biosíntesis , Rosa/enzimología , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Monoterpenos Acíclicos , Datos de Secuencia Molecular , Pirofosfatasas/genética , Rosa/genética , Transcriptoma , Hidrolasas NudixRESUMEN
Roses hold high symbolic value and great cultural importance in different societies throughout human history. They are widely used as garden ornamental plants, as cut flowers, and for the production of essential oils for the perfume and cosmetic industries. Domestication of roses has a long and complex history, and the rose species have been hybridized across vast geographic areas such as Europe, Asia, and the Middle East. The domestication processes selected several flower characters affecting floral quality, such as recurrent flowering, double flowers, petal colours, and fragrance. The molecular and genetic events that determine some of these flower characters cannot be studied using model species such as Arabidopsis thaliana, or at least only in a limited manner. In this review, we comment on the recent development of genetic, genomic, and transcriptomic tools for roses, and then focus on recent advances that have helped unravel the molecular mechanisms underlying several rose floral traits.
Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Rosa/genética , Antocianinas/genética , Antocianinas/metabolismo , Color , Flores/crecimiento & desarrollo , Flores/metabolismo , Genómica/métodos , Fenotipo , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Rosa/crecimiento & desarrollo , Rosa/metabolismo , Factores de Tiempo , Compuestos Orgánicos Volátiles/metabolismoRESUMEN
BACKGROUND: For centuries roses have been selected based on a number of traits. Little information exists on the genetic and molecular basis that contributes to these traits, mainly because information on expressed genes for this economically important ornamental plant is scarce. RESULTS: Here, we used a combination of Illumina and 454 sequencing technologies to generate information on Rosa sp. transcripts using RNA from various tissues and in response to biotic and abiotic stresses. A total of 80714 transcript clusters were identified and 76611 peptides have been predicted among which 20997 have been clustered into 13900 protein families. BLASTp hits in closely related Rosaceae species revealed that about half of the predicted peptides in the strawberry and peach genomes have orthologs in Rosa dataset. Digital expression was obtained using RNA samples from organs at different development stages and under different stress conditions. qPCR validated the digital expression data for a selection of 23 genes with high or low expression levels. Comparative gene expression analyses between the different tissues and organs allowed the identification of clusters that are highly enriched in given tissues or under particular conditions, demonstrating the usefulness of the digital gene expression analysis. A web interface ROSAseq was created that allows data interrogation by BLAST, subsequent analysis of DNA clusters and access to thorough transcript annotation including best BLAST matches on Fragaria vesca, Prunus persica and Arabidopsis. The rose peptides dataset was used to create the ROSAcyc resource pathway database that allows access to the putative genes and enzymatic pathways. CONCLUSIONS: The study provides useful information on Rosa expressed genes, with thorough annotation and an overview of expression patterns for transcripts with good accuracy.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Brotes de la Planta/genética , ARN Mensajero/genética , Rosa/genética , Programas Informáticos , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Fragaria/genética , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Familia de Multigenes , Reacción en Cadena de la Polimerasa , Prunus/genética , TranscriptomaRESUMEN
Cultivated for centuries, the varieties of rose have been selected based on a number of flower traits. Understanding the genetic and molecular basis that contributes to these traits will impact on future improvements for this economically important ornamental plant. In this study, we used scanning electron microscopy and sections of meristems and flowers to establish a precise morphological calendar from early rose flower development stages to senescing flowers. Global gene expression was investigated from floral meristem initiation up to flower senescence in three rose genotypes exhibiting contrasted floral traits including continuous versus once flowering and simple versus double flower architecture, using a newly developed Affymetrix microarray (Rosa1_Affyarray) tool containing sequences representing 4765 unigenes expressed during flower development. Data analyses permitted the identification of genes associated with floral transition, floral organs initiation up to flower senescence. Quantitative real time PCR analyses validated the mRNA accumulation changes observed in microarray hybridizations for a selection of 24 genes expressed at either high or low levels. Our data describe the early flower development stages in Rosa sp, the production of a rose microarray and demonstrate its usefulness and reliability to study gene expression during extensive development phases, from the vegetative meristem to the senescent flower.
Asunto(s)
Flores/crecimiento & desarrollo , Flores/genética , Genes del Desarrollo/genética , Genes de Plantas/genética , Genómica/métodos , Rosa/crecimiento & desarrollo , Rosa/genética , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Flores/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma/genéticaRESUMEN
BACKGROUND: Roses have been cultivated for centuries and a number of varieties have been selected based on flower traits such as petal form, color, and number. Wild-type roses have five petals (simple flowers), whereas high numbers of petals (double flowers) are typical attributes of most of the cultivated roses. Here, we investigated the molecular mechanisms that could have been selected to control petal number in roses. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the expression of several candidate genes known to be involved in floral organ identity determination in roses from similar genetic backgrounds but exhibiting contrasting petal numbers per flower. We show that the rose ortholog of AGAMOUS (RhAG) is differentially expressed in double flowers as compared to simple flowers. In situ hybridization experiments confirm the differential expression of RhAG and demonstrate that in the double-flower roses, the expression domain of RhAG is restricted toward the center of the flower. Conversely, in simple-flower roses, RhAG expression domain is wider. We further show that the border of RhAG expression domain is labile, which allows the selection of rose flowers with increased petal number. Double-flower roses were selected independently in the two major regions for domestication, China and the peri-Mediterranean areas. Comparison of RhAG expression in the wild-type ancestors of cultivated roses and their descendants both in the European and Chinese lineages corroborates the correlation between the degree of restriction of RhAG expression domain and the number of petals. Our data suggests that a restriction of RhAG expression domain is the basis for selection of double flowers in both the Chinese and peri-Mediterranean centers of domestication. CONCLUSIONS/SIGNIFICANCE: We demonstrate that a shift in RhAG expression domain boundary occurred in rose hybrids, causing double-flower phenotype. This molecular event was selected independently during rose domestication in Europe/Middle East and in China.
Asunto(s)
Flores/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Rosa/genética , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Hibridación Genética , Hibridación in Situ , Modelos Anatómicos , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosa/anatomía & histología , Rosa/química , Compuestos Orgánicos Volátiles/análisisRESUMEN
The phenolic methyl ether 3,5-dimethoxytoluene (DMT) is a major scent compound of many modern rose varieties, and its fragrance participates in the characteristic "tea scent" that gave their name to Tea and Hybrid Tea roses. Among wild roses, phenolic methyl ether (PME) biosynthesis is restricted to Chinese rose species, but the progenitors of modern roses included both European and Chinese species (e.g., Rosa chinensis cv Old Blush), so this trait was transmitted to their hybrid progeny. The last steps of the biosynthetic pathways leading to DMT involve two methylation reactions catalyzed by the highly similar orcinol O-methyltransferases (OOMT) 1 and 2. OOMT1 and OOMT2 enzymes exhibit different substrate specificities that are consistent with their operating sequentially in DMT biosynthesis. Here, we show that these different substrate specificities are mostly due to a single amino acid polymorphism in the phenolic substrate binding site of OOMTs. An analysis of the OOMT gene family in 18 species representing the diversity of the genus Rosa indicated that only Chinese roses possess both the OOMT2 and the OOMT1 genes. In addition, we provide evidence that the Chinese-rose-specific OOMT1 genes most probably evolved from an OOMT2-like gene that has homologues in the genomes of all extant roses. We propose that the emergence of the OOMT1 gene may have been a critical step in the evolution of scent production in Chinese roses.
Asunto(s)
Anisoles , Evolución Biológica , Metiltransferasas/genética , Odorantes/análisis , Rosa , Secuencia de Bases , China , Europa (Continente) , Flores , Metilación , Datos de Secuencia Molecular , Polimorfismo Genético , Especificidad por Sustrato/genéticaRESUMEN
Much of our knowledge of speciation genetics stems from quantitative trait locus (QTL) studies. However, interpretations of the size and distribution of QTL underlying species differences are complicated by differences in the way QTL magnitudes are estimated. Also, many studies fail to exploit information about QTL directions or to compare inter- and intraspecific QTL variation. Here, we comprehensively analyze an extensive QTL data set for an interspecific backcross between two wild annual sunflowers, Helianthus annuus and H. petiolaris, interpret different estimates of QTL magnitudes, identify trait groups that have diverged through selection, and compare inter- and intraspecific QTL magnitudes. Our results indicate that even minor QTL (in terms of backcross variance) may be surprisingly large compared to levels of standing variation in the parental species or phenotypic differences between them. Morphological traits, particularly flower morphology, were more strongly or consistently selected than life history or physiological traits. Also, intraspecific QTL were generally smaller than interspecific ones, consistent with the prediction that larger QTL are more likely to spread to fixation across a subdivided population. Our results inform the genetics of species differences in Helianthus and suggest an approach for the simultaneous mapping of inter- and intraspecific QTL.
Asunto(s)
Helianthus/genética , Sitios de Carácter Cuantitativo , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Epistasis Genética , Genes de Plantas , Marcadores Genéticos , Variación Genética , Genética de Población , Modelos Genéticos , Fenotipo , Carácter Cuantitativo Heredable , Especificidad de la Especie , Estadística como AsuntoRESUMEN
Diploid hybrid speciation in plants is often accompanied by rapid ecological divergence between incipient neospecies and their parental taxa. One plausible means by which novel adaptation in hybrid lineages may arise is transgressive segregation, that is, the generation of extreme phenotypes that exceed those of the parental lines. Early generation (BC2) hybrids between two wild, annual sunflowers, Helianthus annuus and Helianthus petiolaris, were used to study directional selection on transgressive characters associated with the origin of Helianthus paradoxus, a diploid hybrid species adapted to extremely saline marshes. The BC2 plants descended from a single F1 hybrid backcrossed toward H. petiolaris. The strength of selection on candidate adaptive traits in the interspecific BC2 was measured in natural H. paradoxus salt marsh habitat. Positive directional selection was detected for leaf succulence and Ca uptake, two traits that are known to be important in salt stress response in plants. Strong negative directional selection operated on uptake of Na and correlated elements. A significant decrease in trait correlations over time was observed in the BC2 population for Na and Ca content, suggesting an adaptive role for increased Ca uptake coupled with increased net exclusion of Na from leaves. Patterns of directional selection in BC2 hybrids were concordant with character expression in the natural hybrid species, H. paradoxus, transplanted into the wild. Moreover, the necessary variation for generating the H. paradoxus phenotype existed only in the BC2 population, but not in samples of the two parental species, H. annuus and H. petiolaris. These results are consistent with the hypothesis that transgressive segregation of elemental uptake and leaf succulence contributed to the origin of salt adaptation in the diploid hybrid species H. paradoxus.
Asunto(s)
Adaptación Biológica , Ambiente , Helianthus/genética , Hibridación Genética , Selección Genética , Calcio/química , Cruzamientos Genéticos , Agua Dulce , Geografía , Helianthus/química , Helianthus/fisiología , Hojas de la Planta/fisiología , Agua de Mar , Sodio/química , Estados UnidosRESUMEN
Hybridization is frequent in many organismal groups, but its role in adaptation is poorly understood. In sunflowers, species found in the most extreme habitats are ancient hybrids, and new gene combinations generated by hybridization are speculated to have contributed to ecological divergence. This possibility was tested through phenotypic and genomic comparisons of ancient and synthetic hybrids. Most trait differences in ancient hybrids could be recreated by complementary gene action in synthetic hybrids and were favored by selection. The same combinations of parental chromosomal segments required to generate extreme phenotypes in synthetic hybrids also occurred in ancient hybrids. Thus, hybridization facilitated ecological divergence in sunflowers.