Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 16(12): e1008437, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33320887

RESUMEN

The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called "Y-Junctions", form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/metabolismo , Pez Cebra/anatomía & histología , Animales , Comunicación Celular , Diferenciación Celular , Simulación por Computador , Pez Cebra/crecimiento & desarrollo
2.
J Neurosci ; 40(6): 1232-1247, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31882403

RESUMEN

In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS.SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.


Asunto(s)
Desdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Midkina/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía , Retina , Animales , Animales Modificados Genéticamente , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Retina/citología , Retina/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
3.
Invest Ophthalmol Vis Sci ; 59(1): 505-518, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29368007

RESUMEN

Purpose: Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. Methods: We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Results: Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. Conclusions: These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.


Asunto(s)
Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/fisiopatología , Proteínas de Pez Cebra/genética , Envejecimiento/fisiología , Animales , Animales Modificados Genéticamente , Recuento de Células , Inmunohistoquímica , Pez Cebra
4.
Neural Dev ; 12(1): 20, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141686

RESUMEN

BACKGROUND: The multiplex, lattice mosaic of cone photoreceptors in the adult fish retina is a compelling example of a highly ordered epithelial cell pattern, with single cell width rows and columns of cones and precisely defined neighbor relationships among different cone types. Cellular mechanisms patterning this multiplex mosaic are not understood. Physical models can provide new insights into fundamental mechanisms of biological patterning. In earlier work, we developed a mathematical model of photoreceptor cell packing in the zebrafish retina, which predicted that anisotropic mechanical tension in the retinal epithelium orients planar polarized adhesive interfaces to align the columns as cone photoreceptors are generated at the retinal margin during post-embryonic growth. METHODS: With cell-specific fluorescent reporters and in vivo imaging of the growing retinal margin in transparent juvenile zebrafish we provide the first view of how cell packing, spatial arrangement, and cell identity are coordinated to build the lattice mosaic. With targeted laser ablation we probed the tissue mechanics of the retinal epithelium. RESULTS: Within the lattice mosaic, planar polarized Crumbs adhesion proteins pack cones into a single cell width column; between columns, N-cadherin-mediated adherens junctions stabilize Müller glial apical processes. The concentration of activated pMyosin II at these punctate adherens junctions suggests that these glial bands are under tension, forming a physical barrier between cone columns and contributing to mechanical stress anisotropies in the epithelial sheet. Unexpectedly, we discovered that the appearance of such parallel bands of Müller glial apical processes precedes the packing of cones into single cell width columns, hinting at a possible role for glia in the initial organization of the lattice mosaic. Targeted laser ablation of Müller glia directly demonstrates that these glial processes support anisotropic mechanical tension in the planar dimension of the retinal epithelium. CONCLUSIONS: These findings uncovered a novel structural feature of Müller glia associated with alignment of photoreceptors into a lattice mosaic in the zebrafish retina. This is the first demonstration, to our knowledge, of planar, anisotropic mechanical forces mediated by glial cells.


Asunto(s)
Células Ependimogliales/citología , Neurogénesis/fisiología , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Conos/citología , Animales , Pez Cebra
5.
Invest Ophthalmol Vis Sci ; 57(13): 5148-5160, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27699411

RESUMEN

PURPOSE: Zebrafish neurons regenerate from Müller glia following retinal lesions. Genes and signaling pathways important for retinal regeneration in zebrafish have been described, but our understanding of how Müller glial stem cell properties are regulated is incomplete. Mammalian Müller glia possess a latent neurogenic capacity that might be enhanced in regenerative therapies to treat degenerative retinal diseases. METHODS: To identify transcriptional changes associated with stem cell properties in zebrafish Müller glia, we performed a comparative transcriptome analysis from isolated cells at 8 and 16 hours following an acute photic lesion, prior to the asymmetric division that produces retinal progenitors. RESULTS: We report a rapid, dynamic response of zebrafish Müller glia, characterized by activation of pathways related to stress, nuclear factor-κB (NF-κB) signaling, cytokine signaling, immunity, prostaglandin metabolism, circadian rhythm, and pluripotency, and an initial repression of Wnt signaling. When we compared publicly available transcriptomes of isolated mouse Müller glia from two retinal degeneration models, we found that mouse Müller glia showed evidence of oxidative stress, variable responses associated with immune regulation, and repression of pathways associated with pluripotency, development, and proliferation. CONCLUSIONS: Categories of biological processes/pathways activated following photoreceptor loss in regeneration-competent zebrafish Müller glia, which distinguished them from mouse Müller glia in retinal degeneration models, included cytokine signaling (notably NF-κB), prostaglandin E2 synthesis, expression of core clock genes, and pathways/metabolic states associated with pluripotency. These regulatory mechanisms are relatively unexplored as potential mediators of stem cell properties likely to be important in Müller glial cells for successful retinal regeneration.


Asunto(s)
Células Ependimogliales/patología , Regeneración Nerviosa/fisiología , Degeneración Retiniana/patología , Neuronas Retinianas/fisiología , Células Madre/patología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Electrorretinografía , Células Ependimogliales/metabolismo , Degeneración Retiniana/fisiopatología , Transducción de Señal
6.
Curr Biol ; 26(17): R794-6, 2016 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-27623258

RESUMEN

Functional repair of damage in the nervous system requires re-establishment of precise patterns of synaptic connectivity. A new study shows that after selective ablation, zebrafish retinal neurons regenerate and reconstruct some, although not all, of their stereotypic wiring.


Asunto(s)
Neuronas , Regeneración , Animales , Sistema Nervioso , Pez Cebra
7.
Nat Commun ; 5: 3699, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24832361

RESUMEN

Many neurons receive synapses in stereotypic proportions from converging but functionally distinct afferents. However, developmental mechanisms regulating synaptic convergence are not well understood. Here we describe a heterotypic mechanism by which one afferent controls synaptogenesis of another afferent, but not vice versa. Like other CNS circuits, zebrafish retinal H3 horizontal cells (HC) undergo an initial period of remodelling, establishing synapses with ultraviolet and blue cones while eliminating red and green cone contacts. As development progresses, the HCs selectively synapse with ultraviolet cones to generate a 5:1 ultraviolet-to-blue cone synapse ratio. Blue cone synaptogenesis increases in mutants lacking ultraviolet cones, and when transmitter release or visual stimulation of ultraviolet cones is perturbed. Connectivity is unaltered when blue cone transmission is suppressed. Moreover, there is no cell-autonomous regulation of cone synaptogenesis by neurotransmission. Thus, biased connectivity in this circuit is established by an unusual activity-dependent, unidirectional control of synaptogenesis exerted by the dominant input.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/fisiología , Células Horizontales de la Retina/fisiología , Sinapsis/fisiología , Pez Cebra , Animales , Plasticidad Neuronal , Retina/fisiología
8.
PLoS One ; 9(1): e85325, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465536

RESUMEN

Cone photoreceptors in teleost fish are organized in precise, crystalline arrays in the epithelial plane of the retina. In zebrafish, four distinct morphological/spectral cone types occupy specific, invariant positions within a regular lattice. The cone lattice is aligned orthogonal and parallel to circumference of the retinal hemisphere: it emerges as cones generated in a germinal zone at the retinal periphery are incorporated as single-cell columns into the cone lattice. Genetic disruption of the transcription factor Tbx2b eliminates most of the cone subtype maximally sensitive to ultraviolet (UV) wavelengths and also perturbs the long-range organization of the cone lattice. In the tbx2b mutant, the other three cone types (red, green, and blue cones) are specified in the correct proportion, differentiate normally, and acquire normal, planar polarized adhesive interactions mediated by Crumbs 2a and Crumbs 2b. Quantitative image analysis of cell adjacency revealed that the cones in the tbx2b mutant primarily have two nearest neighbors and align in single-cell-wide column fragments that are separated by rod photoreceptors. Some UV cones differentiate at the dorsal retinal margin in the tbx2b mutant, although they are severely dysmorphic and are eventually eliminated. Incorporating loss of UV cones during formation of cone columns at the margin into our previously published mathematical model of zebrafish cone mosaic formation (which uses bidirectional interactions between planar cell polarity proteins and anisotropic mechanical stresses in the plane of the retinal epithelium to generate regular columns of cones parallel to the margin) reproduces many features of the pattern disruptions seen in the tbx2b mutant.


Asunto(s)
Morfogénesis/genética , Células Fotorreceptoras Retinianas Conos/ultraestructura , Células Fotorreceptoras Retinianas Bastones/ultraestructura , Proteínas de Dominio T Box/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Adhesión Celular , Comunicación Celular/efectos de la radiación , Diferenciación Celular , Polaridad Celular/efectos de la radiación , Embrión no Mamífero , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación , Transducción de Señal , Proteínas de Dominio T Box/deficiencia , Rayos Ultravioleta , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo
9.
Prog Retin Eye Res ; 40: 94-123, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24412518

RESUMEN

Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine.


Asunto(s)
Células Ependimogliales/fisiología , Retina , Neuronas Retinianas/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular , Retina/embriología , Retina/crecimiento & desarrollo , Retina/lesiones , Percepción Visual/fisiología , Pez Cebra
10.
Development ; 140(22): 4510-21, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24154521

RESUMEN

Müller glia function as retinal stem cells in adult zebrafish. In response to loss of retinal neurons, Müller glia partially dedifferentiate, re-express neuroepithelial markers and re-enter the cell cycle. We show that the immunoglobulin superfamily adhesion molecule Alcama is a novel marker of multipotent retinal stem cells, including injury-induced Müller glia, and that each Müller glial cell divides asymmetrically only once to produce an Alcama-negative, proliferating retinal progenitor. The initial mitotic division of Müller glia involves interkinetic nuclear migration, but mitosis of retinal progenitors occurs in situ. Rapidly dividing retinal progenitors form neurogenic clusters tightly associated with Alcama/N-cadherin-labeled Müller glial radial processes. Genetic suppression of N-cadherin function interferes with basal migration of retinal progenitors and subsequent regeneration of HuC/D(+) inner retinal neurons.


Asunto(s)
División Celular Asimétrica , Cadherinas/metabolismo , Células Ependimogliales/citología , Células-Madre Neurales/citología , Regeneración , Neuronas Retinianas/citología , Pez Cebra/metabolismo , Animales , División Celular Asimétrica/efectos de los fármacos , Biomarcadores/metabolismo , Adhesión Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Desdiferenciación Celular/efectos de los fármacos , Células Ependimogliales/efectos de los fármacos , Células Ependimogliales/metabolismo , Heterocigoto , Modelos Biológicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neurogénesis/efectos de los fármacos , Ouabaína/farmacología , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Regeneración/efectos de los fármacos , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Neuronas Retinianas/efectos de los fármacos , Neuronas Retinianas/metabolismo , Proteínas de Pez Cebra/metabolismo
11.
Glia ; 61(10): 1687-97, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918319

RESUMEN

Müller glia are the resident radial glia in the vertebrate retina. The response of mammalian Müller glia to retinal damage often results in a glial scar and no functional replacement of lost neurons. Adult zebrafish Müller glia, in contrast, are considered tissue-specific stem cells that can self-renew and generate neurogenic progenitors to regenerate all retinal neurons after damage. Here, we demonstrate that regulation of TGFß signaling by the corepressors Tgif1 and Six3b is critical for the proliferative response to photoreceptor destruction in the adult zebrafish retina. When function of these corepressors is disrupted, Müller glia and their progeny proliferate less, leading to a significant reduction in photoreceptor regeneration. Tgif1 expression and regulation of TGFß signaling are implicated in the function of several types of stem cells, but this is the first demonstration that this regulatory network is necessary for regeneration of neurons.


Asunto(s)
Células Ependimogliales/metabolismo , Regeneración Nerviosa/fisiología , Degeneración Retiniana/patología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas del Ojo/genética , Gliosis/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Estimulación Luminosa/efectos adversos , Retina/patología , Degeneración Retiniana/etiología , Factor de Crecimiento Transformador beta/genética , Regulación hacia Arriba/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína Homeobox SIX3
12.
PLoS Comput Biol ; 8(8): e1002618, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22936893

RESUMEN

The orderly packing and precise arrangement of epithelial cells is essential to the functioning of many tissues, and refinement of this packing during development is a central theme in animal morphogenesis. The mechanisms that determine epithelial cell shape and position, however, remain incompletely understood. Here, we investigate these mechanisms in a striking example of planar order in a vertebrate epithelium: The periodic, almost crystalline distribution of cone photoreceptors in the adult teleost fish retina. Based on observations of the emergence of photoreceptor packing near the retinal margin, we propose a mathematical model in which ordered columns of cells form as a result of coupling between planar cell polarity (PCP) and anisotropic tissue-scale mechanical stresses. This model recapitulates many observed features of cone photoreceptor organization during retinal growth and regeneration. Consistent with the model's predictions, we report a planar-polarized distribution of Crumbs2a protein in cone photoreceptors in both unperturbed and regenerated tissue. We further show that the pattern perturbations predicted by the model to occur if the imposed stresses become isotropic closely resemble defects in the cone pattern in zebrafish lrp2 mutants, in which intraocular pressure is increased, resulting in altered mechanical stress and ocular enlargement. Evidence of interactions linking PCP, cell shape, and mechanical stresses has recently emerged in a number of systems, several of which show signs of columnar cell packing akin to that described here. Our results may hence have broader relevance for the organization of cells in epithelia. Whereas earlier models have allowed only for unidirectional influences between PCP and cell mechanics, the simple, phenomenological framework that we introduce here can encompass a broad range of bidirectional feedback interactions among planar polarity, shape, and stresses; our model thus represents a conceptual framework that can address many questions of importance to morphogenesis.


Asunto(s)
Polaridad Celular , Retina/citología , Animales , Pez Cebra/embriología
13.
Neural Dev ; 7: 30, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22920725

RESUMEN

BACKGROUND: The zebrafish retina maintains two populations of stem cells: first, the germinal zone or ciliary marginal zone (CMZ) contains multipotent retinal progenitors that add cells to the retinal periphery as the fish continue to grow; second, radial glia (Müller cells) occasionally divide asymmetrically to generate committed progenitors that differentiate into rod photoreceptors, which are added interstitially throughout the retina with growth. Retinal injury stimulates Müller glia to dedifferentiate, re-enter the cell cycle, and generate multipotent retinal progenitors similar to those in the CMZ to replace missing neurons. The specific signals that maintain these two distinct populations of endogenous retinal stem cells are not understood. RESULTS: We used genetic and pharmacological manipulation of the ß-catenin/Wnt signaling pathway to show that it is required to maintain proliferation in the CMZ and that hyperstimulation of ß-catenin/Wnt signaling inhibits normal retinal differentiation and expands the population of proliferative retinal progenitors. To test whether similar effects occur during regeneration, we developed a method for making rapid, selective photoreceptor ablations in larval zebrafish with intense light. We found that dephosphorylated ß-catenin accumulates in Müller glia as they re-enter the cell cycle following injury, but not in Müller glia that remain quiescent. Activation of Wnt signaling is required for regenerative proliferation, and hyperstimulation results in loss of Müller glia from the INL as all proliferative cells move into the ONL. CONCLUSIONS: ß-catenin/Wnt signaling is thus required for the maintenance of retinal progenitors during both initial development and lesion-induced regeneration, and is sufficient to prevent differentiation of those progenitors and maintain them in a proliferative state. This suggests that the ß-catenin/Wnt cascade is part of the shared molecular circuitry that maintains retinal stem cells for both homeostatic growth and epimorphic regeneration.


Asunto(s)
Regeneración Nerviosa/fisiología , Retina/citología , Retina/crecimiento & desarrollo , Células Madre/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Animales Modificados Genéticamente , Benzazepinas/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Embrión no Mamífero , Inhibidores Enzimáticos/farmacología , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Indoles/farmacología , Larva , Mutación/genética , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/genética , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Retina/lesiones , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Células Madre/efectos de los fármacos , Factores de Tiempo , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta Catenina/genética
14.
Methods Mol Biol ; 884: 255-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688712

RESUMEN

Microarray-based gene profiling has become an important technique to measure changes in gene expression on a genome-wide scale. Recently, cell-specific microarrays have been reported to study changes in gene expression of a particular cell type in several model organisms. Here, we describe a protocol to prepare RNA samples for microarray analysis of isolated Müller glia-derived retinal stem cells from light-damaged adult zebrafish expressing a fluorescent marker in Müller cells using enzymatic retinal dissociation followed by fluorescence-activated cell sorting (FACS).


Asunto(s)
Perfilación de la Expresión Génica/métodos , Luz/efectos adversos , Neuroglía/metabolismo , Retina/metabolismo , Células Madre/metabolismo , Animales , Citometría de Flujo , Análisis de Secuencia por Matrices de Oligonucleótidos , Retina/citología , Retina/lesiones , Retina/efectos de la radiación , Pez Cebra
15.
Exp Eye Res ; 93(5): 726-34, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21945172

RESUMEN

Fgf signaling is required for many biological processes involving the regulation of cell proliferation and maintenance, including embryonic patterning, tissue homeostasis, wound healing, and cancer progression. Although the function of Fgf signaling is suggested in several different regeneration models, including appendage regeneration in amphibians and fin and heart regeneration in zebrafish, it has not yet been studied during zebrafish photoreceptor cell regeneration. Here we demonstrate that intravitreal injections of FGF-2 induced rod precursor cell proliferation and photoreceptor cell neuroprotection during intense light damage. Using the dominant-negative Tg(hsp70:dn-fgfr1) transgenic line, we found that Fgf signaling was required for homeostasis of rod, but not cone, photoreceptors. Even though fgfr1 is expressed in both rod and cone photoreceptors, we found that Fgf signaling differentially affected the regeneration of cone and rod photoreceptors in the light-damaged retina, with the dominant-negative hsp70:dn-fgfr1 transgene significantly repressing rod photoreceptor regeneration without affecting cone photoreceptors. These data suggest that rod photoreceptor homeostasis and regeneration is Fgf-dependent and that rod and cone photoreceptors in adult zebrafish are regulated by different signaling pathways.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Regeneración/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Transducción de Señal/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis , Proliferación Celular , Citoprotección , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas HSP70 de Choque Térmico/genética , Homeostasis/fisiología , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Microscopía Fluorescente , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Pez Cebra
16.
J Comp Neurol ; 518(20): 4182-95, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20878782

RESUMEN

Cone photoreceptors in fish are typically arranged into a precise, reiterated pattern known as a "cone mosaic." Cone mosaic patterns can vary in different fish species and in response to changes in habitat, yet their function and the mechanisms of their development remain speculative. Zebrafish (Danio rerio) have four cone subtypes arranged into precise rows in the adult retina. Here we describe larval zebrafish cone patterns and investigate a previously unrecognized transition between larval and adult cone mosaic patterns. Cone positions were determined in transgenic zebrafish expressing green fluorescent protein (GFP) in their UV-sensitive cones, by the use of multiplex in situ hybridization labelling of various cone opsins. We developed a "mosaic metric" statistical tool to measure local cone order. We found that ratios of the various cone subtypes in larval and adult zebrafish were statistically different. The cone photoreceptors in larvae form a regular heterotypic mosaic array; i.e., the position of any one cone spectral subtype relative to the other cone subtypes is statistically different from random. However, the cone spectral subtypes in larval zebrafish are not arranged in continuous rows as in the adult. We used cell birth dating to show that the larval cone mosaic pattern remains as a distinct region within the adult retina and does not reorganize into the adult row pattern. In addition, the abundance of cone subtypes relative to other subtypes is different in this larval remnant compared with that of larvae or canonical adult zebrafish retina. These observations provide baseline data for understanding the development of cone mosaics via comparative analysis of larval and adult cone development in a model species.


Asunto(s)
Larva/anatomía & histología , Retina , Células Fotorreceptoras Retinianas Conos/citología , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva/fisiología , Opsinas/genética , Opsinas/metabolismo , Retina/anatomía & histología , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Conos/fisiología , Pez Cebra/genética
17.
Vis Neurosci ; 26(5-6): 495-501, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19860997

RESUMEN

The retina displays numerous processes that follow a circadian rhythm. These processes are coordinated through the direct action of light on photoreceptive molecules and, in the absence of light, through autocrine/paracrine actions of extracellular neuromodulators. We previously described the expression of the genes encoding the secreted heparin-binding growth factors, midkine-a (mdka) and midkine-b (mdkb), in the retina of the zebrafish. Here, we provide evidence that the expression of mdka and mdkb follows a daily rhythm, which is independent of the presence or absence of light, and we propose that the expression of mdka is regulated by the circadian clock. Both qualitative and quantitative measures show that for mdka, the levels of mRNA and protein decrease during the night and increase during the subjective day. Qualitative measures show that the expression of mdkb increases during the second half of the subjective night and decreases during the second half of the subjective day. Within horizontal cells, the two midkine paralogs show asynchronous circadian regulation. Though intensely studied in the contexts of physiology and disease, this is the first study to provide evidence for the circadian regulation of midkines in the vertebrate nervous system.


Asunto(s)
Ritmo Circadiano , Citocinas/biosíntesis , Regulación de la Expresión Génica , Retina/metabolismo , Pez Cebra/fisiología , Animales , Citocinas/genética , Inmunohistoquímica , Luz , Midkina , Fotoperiodo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Retina/citología
18.
Proc Natl Acad Sci U S A ; 106(23): 9310-5, 2009 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-19474300

RESUMEN

In a microarray-based gene profiling analysis of Müller glia-derived retinal stem cells in light-damaged retinas from adult zebrafish, we found that 2 genes required for regeneration of fin and heart tissues in zebrafish, hspd1 (heat shock 60-kDa protein 1) and mps1 (monopolar spindle 1), were up-regulated. Expression of both genes in the neurogenic Müller glia and progenitors was independently verified by quantitative reverse transcriptase PCR and in situ hybridization. Functional analysis of temperature-sensitive mutants of hspd1 and mps1 revealed that both are necessary for Müller glia-based cone photoreceptor regeneration in adult zebrafish retina. In the amputated fin, hspd1 is required for the induction of mesenchymal stem cells and blastema formation, whereas mps1 is required at a later step for rapid cell proliferation and outgrowth. This temporal sequence of hspd1 and mps1 function is conserved in the regenerating retina. Comparison of gene expression profiles from regenerating zebrafish retina, caudal fin, and heart muscle revealed additional candidate genes potentially implicated in injury-induced epimorphic regeneration in diverse zebrafish tissues.


Asunto(s)
Regeneración , Neuronas Retinianas/fisiología , Pez Cebra/fisiología , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Perfilación de la Expresión Génica , Luz , Neuroglía/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Nicho de Células Madre , Células Madre/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Brain Res ; 1192: 134-50, 2008 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-17466954

RESUMEN

How does a retinal progenitor choose to differentiate as a rod or a cone and, if it becomes a cone, which one of their different subtypes? The mechanisms of photoreceptor cell fate specification and differentiation have been extensively investigated in a variety of animal model systems, including human and non-human primates, rodents (mice and rats), chickens, frogs (Xenopus) and fish. It appears timely to discuss whether it is possible to synthesize the resulting information into a unified model applicable to all vertebrates. In this review we focus on several widely used experimental animal model systems to highlight differences in photoreceptor properties among species, the diversity of developmental strategies and solutions that vertebrates use to create retinas with photoreceptors that are adapted to the visual needs of their species, and the limitations of the methods currently available for the investigation of photoreceptor cell fate specification. Based on these considerations, we conclude that we are not yet ready to construct a unified model of photoreceptor cell fate specification in the developing vertebrate retina.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación Enzimológica de la Expresión Génica/genética , Células Fotorreceptoras/embriología , Células Madre/metabolismo , Vertebrados/embriología , Animales , Evolución Biológica , Humanos , Modelos Animales , Células Fotorreceptoras/citología , Células Fotorreceptoras/metabolismo , Filogenia , Especificidad de la Especie , Células Madre/citología
20.
Proc Natl Acad Sci U S A ; 104(35): 13996-4001, 2007 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-17715297

RESUMEN

The zebrafish is a powerful model for studying vascular development, demonstrating remarkable conservation of this process with mammals. Here, we identify a zebrafish mutant, redhead (rhd(mi149)), that exhibits embryonic CNS hemorrhage with intact gross development of the vasculature and normal hemostatic function. We show that the rhd phenotype is caused by a hypomorphic mutation in p21-activated kinase 2a (pak2a). PAK2 is a kinase that acts downstream of the Rho-family GTPases CDC42 and RAC and has been implicated in angiogenesis, regulation of cytoskeletal structure, and endothelial cell migration and contractility among other functions. Correction of the Pak2a-deficient phenotype by Pak2a overexpression depends on kinase activity, implicating Pak2 signaling in the maintenance of vascular integrity. Rescue by an endothelial-specific transgene further suggests that the hemorrhage seen in Pak2a deficiency is the result of an autonomous endothelial cell defect. Reduced expression of another PAK2 ortholog, pak2b, in Pak2a-deficient embryos results in a more severe hemorrhagic phenotype, consistent with partially overlapping functions for these two orthologs. These data provide in vivo evidence for a critical function of Pak2 in vascular integrity and demonstrate a severe disease phenotype resulting from loss of Pak2 function.


Asunto(s)
Hemorragia Cerebral/genética , Mutación , Proteínas Serina-Treonina Quinasas/genética , Pez Cebra/genética , Empalme Alternativo , Animales , Hemorragia Cerebral/embriología , Circulación Cerebrovascular/genética , Mapeo Cromosómico , Embrión no Mamífero , Genes Recesivos , Variación Genética , Polimorfismo de Longitud del Fragmento de Restricción , Proteínas Serina-Treonina Quinasas/deficiencia , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética , Proteínas de Pez Cebra/genética , Quinasas p21 Activadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA