Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2022: 1042253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127935

RESUMEN

Enteric-coated application on drug is used to prevent the drug from inactivation which are degraded by gastric enzyme. The present study is aimed at achieving controlled drug delivery in acidic medium of gastrointestinal tract (GIT) by enteric coating of hydroxy propyl methylcellulose (HPMC) and Eudragit L100 on carboxylated agarose hydrogel, creating a pH-dependent delivery system. Fourier-transformed infrared spectroscopy (FTIR) was for the detection of carboxylic group on agarose hydrogel, and scanning electron microscope (SEM) was used for the determination surface of prepared formulation. To check the pH sensitivity of enteric-coated formulation, different pH solution was used. It was found that the formulation was not dissolved in 1.2 but dissolve in pH 6.8 similarly; hydrogels lacking coating showed that tartrazine was more dissolved in pH 1.2, and less dissolved at pH 6.8. The release of tartrazine from the hydrogels was measured by using spectrophotometer and using a scanning electron microscope to examine the morphology and surface appearance of hydrogel capsules. This study revealed cracks on coated samples, while noncoated samples showed clear appearance with no cracks. Our findings revealed that this method could be useful for the development of an enteric coating drug delivery system.


Asunto(s)
Hidrogeles , Tartrazina , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Derivados de la Hipromelosa , Ácidos Polimetacrílicos/química , Sefarosa
2.
Polymers (Basel) ; 13(23)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883720

RESUMEN

Transdermal drug delivery is important to maintain plasma drug concentrations for therapeutic efficacy. The current study reports the design, formulation, and evaluation of tizanidine transdermal patches formulated using chitosan and thiolated chitosan, ethyl cellulose (EC), polyvinylpyrrolidone (PVP), and Eudragit RL100 in different ratios. The tizanidine patches were formulated using flaxseed oil and coriander oil in the concentrations of 1% v/w, 2% v/w, 3% v/w, 4% v/w, 5% v/w, and 10% v/w. The patches were subjected to characterization of physicochemical property (thickness, weight uniformity, drug content, efficiency, percentage moisture uptake/loss), in vitro drug release and drug permeation, skin irritation, in vivo application, pharmacokinetics analysis, and stability studies. The results indicate that the interaction of thiolated chitosan with the negative charges of the skin opens the tight junctions of the skin, whereas flaxseed and coriander oils change the conformational domain of the skin. The novelty of this study is in the use of flaxseed and coriander oils as skin permeation enhancers for the formulation of tizanidine transdermal patches. The formulations follow non-Fickian drug release kinetics. The FTZNE23, FTZNE36 and FTZNE54, with 5% v/w flaxseed oil loaded formulations, exhibited higher flux through rabbit skin compared with FTZNE30, FTZNE35, FTZNE42, and FTZNE47, formulations loaded with 10% v/w coriander oil. The study concludes that flaxseed oil is a better choice for formulating tizanidine patches, offering optimal plasma concentration and therapeutic efficacy, and recommends the use of flaxseed and coriander oil based patches as a novel transdermal delivery system for tizanidine and related classes of drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...