Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(4): 3531-3541, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38236027

RESUMEN

Metallic lithium (Li) is the most attractive anode for Li batteries because it holds the highest theoretical specific capacity (3860 mA h g-1) and the lowest redox potential (-3.040 V vs SHE). However, the poor interface stability of the Li anode, which is caused by the high reactivity and dendrite formation of metallic Li upon cycling, leads to undesired electrochemical performance and safety issues. While two-dimensional boron nitride (BN) nanosheets have been utilized as an interfacial layer, the mechanism on how they stabilize the Li-electrolyte interface remains elusive. Here, we show how BN nanosheet interlayers suppress Li dendrite formation, enhance Li ion transport kinetics, facilitate Li deposition, and reduce electrolyte decomposition. We show through both simulation and experimental data that the desolvation process of a solvated Li ion within the interlayer nanochannels kinetically favors Li deposition. This process enables long cycling stability, reduced voltage polarization, improved interface stability, and negligible volume expansion. Their application as an interfacial layer in symmetric cells and full cells that display significantly improved electrochemical properties is also demonstrated. The knowledge gained in this study provides both critical insights and practical guidelines for designing a Li metal anode with significantly improved performance.

2.
J Mater Chem B ; 11(31): 7364-7377, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37431606

RESUMEN

Tissue engineered skin and its substitutes have a promising future in wound healing. However, enabling fast formation of blood vessels during the wound healing process is still a huge challenge to the currently available wound substitutes. In this work, active mesoporous bioglass nanoparticles with a high specific surface area and doped with strontium (Sr) were fabricated for rapid microvascularization and wound healing. The as-prepared bioglass nanoparticles with Sr ions significantly promoted the proliferation of fibroblasts and microvascularization of human umbilical vein endothelial cells in vitro. Silk fibroin sponges encapsulating the nanoparticles accelerated wound healing by promoting the formation of blood vessels and epithelium in vivo. This work provides a strategy for the design and development of active biomaterials for enhancing wound healing by rapid vascularization and epithelial reconstruction.


Asunto(s)
Nanopartículas , Estroncio , Humanos , Estroncio/farmacología , Neovascularización Fisiológica , Cicatrización de Heridas , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Patológica
3.
J Environ Chem Eng ; 11(3): 110176, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37234558

RESUMEN

Although waterborne virus removal may be achieved using separation membrane technologies, such technologies remain largely inefficient at generating virus-free effluents due to the lack of anti-viral reactivity of conventional membrane materials required to deactivating viruses. Here, a stepwise approach towards simultaneous filtration and disinfection of Human Coronavirus 229E (HCoV-229E) in water effluents, is proposed by engineering dry-spun ultrafiltration carbon nanotube (CNT) membranes, coated with anti-viral SnO2 thin films via atomic layer deposition. The thickness and pore size of the engineered CNT membranes were fine-tuned by varying spinnable CNT sheets and their relative orientations on carbon nanofibre (CNF) porous supports to reach thicknesses less than 1 µm and pore size around 28 nm. The nanoscale SnO2 coatings were found to further reduce the pore size down to ∼21 nm and provide more functional groups on the membrane surface to capture the viruses via size exclusion and electrostatic attractions. The synthesized CNT and SnO2 coated CNT membranes were shown to attain a viral removal efficiency above 6.7 log10 against HCoV-229E virus with fast water permeance up to ∼4 × 103 and 3.5 × 103 L.m-2.h-1.bar-1, respectively. Such high performance was achieved by increasing the dry-spun CNT sheets up to 60 layers, orienting successive 30 CNT layers at 45°, and coating 40 nm SnO2 on the synthesized membranes. The current study provides an efficient scalable fabrication scheme to engineer flexible ultrafiltration CNT-based membranes for cost-effective filtration and inactivation of waterborne viruses to outperform the state-of-the-art ultrafiltration membranes.

4.
Small Methods ; 7(8): e2201527, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36808897

RESUMEN

X-rays are a penetrating form of high-energy electromagnetic radiation with wavelengths ranging from 10 pm to 10 nm. Similar to visible light, X-rays provide a powerful tool to study the atoms and elemental information of objects. Different characterization methods based on X-rays are established, such as X-ray diffraction, small- and wide-angle X-ray scattering, and X-ray-based spectroscopies, to explore the structural and elemental information of varied materials including low-dimensional nanomaterials. This review summarizes the recent progress of using X-ray related characterization methods in MXenes, a new family of 2D nanomaterials. These methods provide key information on the nanomaterials, covering synthesis, elemental composition, and the assembly of MXene sheets and their composites. Additionally, new characterization methods are proposed as future research directions in the outlook section to enhance understanding of MXene surface and chemical properties. This review is expected to provide a guideline for characterization method selection and aid in precise interpretation of the experimental data in MXene research.

5.
J Colloid Interface Sci ; 627: 10-20, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35839556

RESUMEN

Transition metal selenides (TMSe) are considered as potential anode materials for supercapacitors because of their abundant reserves and high safety.However, their poor conductivity limits their high rate performance and stability.In this paper, an N-doped porous nanocarbon-coated Co3Se4 quantum dots (NCCS-QDs) composite is prepared as the cathode material of supercapacitor. The formation of Co3Se4 quantum dots complies with a size minimization strategy to speed up ion transport. At the same time, the Co0.85Se nanosheets are converted into Co3Se4 quantum dots, avoiding the collapse of the nanosheets during the electrochemical process. In addition, the porous nanocarbon coating increases the number of active sites and the contact area between the electrode and the electrolyte, which can provide more ion transport channels and pore sizes, while avoiding the generation of inactive clusters in the electrochemical reaction of quantum dots. The as-assembled NCCS-QDs-2//AC ASCs devices demonstrate excellent electrochemical performance with an energy density of 84.59 Wh kg-1 at a power density of 799.99 W kg-1.At the same time, the ASCs device showed excellent cycle stability, with 95.6% of the initial capacitance still maintained after 15,000 charge and discharge cycles.The excellent electrochemical performance of NCCS-QDs-2//AC ASC device proves that NCCS-QDs composite material has a broad application prospect in the cathode material of supercapacitor.

6.
ACS Appl Mater Interfaces ; 14(30): 34770-34780, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867520

RESUMEN

Reasonable design of materials with complex nanostructures and diverse chemical compositions is of great significance in the field of energy storage. Cu7KS4 (CKS) is considered a potential electrode material for supercapacitors due to its superior electrical conductivity. Transition metal hydroxides are widely used as electrode materials for supercapacitors due to their high theoretical specific capacitance (Cs); however, single metal species with limited active sites restrict their further applications for energy storage. Herein, through a hydrothermal reaction, CKS nanorods were prepared, and then binary metal hydroxide NixCo1-x(OH)2 nanosheets were generated directly on CKS nanorods through a one-step hydrothermal reaction to form a nano-core-shell structure (NCSS). By regulating the mole ratio of nickel nitrate to cobalt nitrate, the resulting Ni0.75Co0.25(OH)2 nanosheets with the best electrochemical activity were prepared and supported on CKS nanorods to form a CKS@N0.75C0.25OH NCSS. The as-prepared CKS@N0.75C0.25OH NCSS has a larger specific surface area, which can provide more active sites, while the abundant metal species composition can generate abundant redox reactions to boost the pseudocapacitance. The prepared CKS@N0.75C0.25OH/NF electrode exhibits outstanding specific capacitance and cycle life. The assembled CKS@N0.75C0.25OH/NF//AC all-solid-state asymmetric supercapacitor achieves a high energy density of 88.7 Wh kg-1 at a power density of 849.9 W kg-1 with superior cycle life. Therefore, the use of polymetallic hydroxides to construct NCSS electrodes has great research significance and broad application prospects.

7.
Nanoscale ; 14(17): 6299-6304, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35420082

RESUMEN

MXene inks are promising candidates for fabricating conductive circuits and flexible devices. Here, MXene inks prepared from solvent mixtures demonstrate long-term stability and can be employed in commercial rollerball pens to write electronic circuits on flexible substrates. Such circuits exhibit a fast and accurate capacitive response for touch-boards and water level measurement, indicating the excellent potential of these MXene inks in electrical device fabrication.

8.
Macromol Rapid Commun ; 43(11): e2200114, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35344626

RESUMEN

Ti3 C2 Tx MXene (or "MXene" for simplicity) has gained noteworthy attention for its metal-like electrical conductivity and high electrochemical capacitance-a unique blend of properties attractive toward a wide range of applications such as energy storage, healthcare monitoring, and electromagnetic interference shielding. However, processing MXene architectures using conventional methods often deals with the presence of defects, voids, and isotropic flake arrangements, resulting in a trade-off in properties. Here, a sequential bridging (SB) strategy is reported to fabricate dense, freestanding MXene films of interconnected flakes with minimal defects, significantly enhancing its mechanical properties, specifically tensile strength (≈285 MPa) and breaking energy (≈16.1 MJ m-3 ), while retaining substantial values of electrical conductivity (≈3050 S cm-1 ) and electrochemical capacitance (≈920 F cm-3 ). This SB method first involves forming a cellulose nanocrystal-stitched MXene framework, followed by infiltration with structure-densifying calcium cations (Ca2+ ), resulting in tough and fatigue resistant films with anisotropic, evenly spaced, and strongly interconnected flakes - properties essential for developing high-performance energy-storage devices. It is anticipated that the knowledge gained in this work will be extended toward improving the robustness and retaining the electronic properties of 2D nanomaterial-based macroarchitectures.

9.
Materials (Basel) ; 15(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35329660

RESUMEN

In this work, laser-heated electrospinning (LES) process using carbon dioxide laser was explored as an eco-friendly method for producing ultrafine fibers. To enhance the thinning of fibers and the formation of fiber structure, planar or equibiaxial stretching and subsequent annealing processes were applied to poly(ethylene terephthalate) (PET) fiber webs prepared by LES. The structure and properties of the obtained webs were investigated. Ultrafine fiber webs with an average diameter of approximately 1 µm and a coefficient of variation of 20-25% were obtained when the stretch ratios in the MD (machine direction) × TD (transverse direction) were 3 × 1 and 3 × 3 for the planar and equibiaxial stretching, respectively. In the wide-angle X-ray diffraction analysis of the web samples, preferential orientation of crystalline c-axis were confirmed along the MD for planar stretching and only along the web plane for equibiaxial stretching, which was in contrast to the stretching of film samples, where additional preferential orientation of benzene ring along the film plane proceeded. The results obtained suggest that PET fiber webs fabricated through LES and subsequent planar or biaxial stretching processes have potential for a wide variety of applications, such as packaging and battery separator materials.

10.
Chem Commun (Camb) ; 58(12): 1946-1949, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35043800

RESUMEN

Three-dimensional lithium (Li) hosts have been shown to suppress the growth of Li dendrites for next generation Li metal batteries. Here, we report a cost-effective and scalable approach to produce highly stable Li composite anodes from industrial hemp textile waste. The hemp@Li composite anodes demonstrate stable cycling both in half and full cells.

11.
Macromol Rapid Commun ; 43(7): e2100891, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34939252

RESUMEN

Regenerated silk fibers typically fall short of silkworm cocoon fibers in mechanical properties due to reduced fiber crystal structure and alignment. One approach to address this has been to employ inorganic materials as reinforcing agents. The present study avoids the need for synthetic additives, demonstrating the first use of exfoliated silk nanofibers to control silk solution crystallization, resulting in all-silk pseudocomposite fibers with remarkable mechanical properties. Incorporating only 0.06 wt% silk nanofibers led to a ≈44% increase in tensile strength (over 600 MPa) and ≈33% increase in toughness (over 200 kJ kg-1 ) compared with fibers without silk nanofibers. These remarkable properties can be attributed to nanofiber crystal seeding in conjunction with fiber draw. The crystallinity nearly doubled from ≈17% for fiber spun from pure silk solution to ≈30% for the silk nanofiber reinforced sample. The latter fiber also shows a high degree of crystal orientation with a Herman's orientation factor of 0.93, a value which approaches that of natural degummed B. mori silk cocoon fiber (0.96). This study provides a strong foundation to guide the development of simple, eco-friendly methods to spin regenerated silk with excellent properties and a hierarchical structure that mimics natural silk.


Asunto(s)
Bombyx , Fibroínas , Nanofibras , Animales , Bombyx/química , Fibroínas/química , Nanofibras/química , Seda/química , Resistencia a la Tracción
12.
Mater Horiz ; 8(11): 2886-2912, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724521

RESUMEN

The exciting combination of high electrical conductivity, high specific capacitance and colloidal stability of two-dimensional Ti3C2Tx MXene (referred to as MXene) has shown great potential in a wide range of applications including wearable electronics, energy storage, sensors, and electromagnetic interference shielding. To realize its full potential, recent literature has reported a variety of solution-based processing methodologies to develop MXenes into multifunctional architectures, such as fibres, films and aerogels. In response to these recent critical advances, this review provides a comprehensive analysis of the diverse solution-based processing methodologies currently being used for MXene-architecture fabrication. A critical evaluation of the processing challenges directly affecting macroscale material properties and ultimately, the performance of the resulting prototype devices is also provided. Opportunities arising from the observed and foreseen challenges regarding their use are discussed to provide avenues for new designs and realise practical use in high performance applications.

13.
ACS Appl Mater Interfaces ; 13(42): 50524-50530, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641668

RESUMEN

Molybdenum carbide and nitride nanocrystals have been widely recognized as ideal electrocatalyst materials for water splitting. Furthermore, the interfacial engineering strategy can effectively tune their physical and chemical properties to improve performance. Herein, we produced N-doped molybdenum carbide nanosheets on carbonized melamine (N-doped Mo2C@CN) and 3D hollow Mo2C-Mo2N nanostructures (3D H-Mo2C-Mo2N) with tuneable interfacial properties via high-temperature treatment. X-ray photoelectron spectroscopy reveals that Mo2C and Mo2N nanocrystals in 3D hollow nanostructures are chemically bonded with each other and produce stable heterostructures. The 3D H-Mo2C-Mo2N nanostructures demonstrate lower onset potential and overpotential at a current density of 10 mV cm-2 than the N-doped Mo2C@CN nanostructure due to its higher active sites and improved interfacial charge transfer. The current work presents a strategy to tune metal carbide/nitride nanostructures and interfacial properties for the production of high-performance energy materials.

14.
ACS Appl Mater Interfaces ; 13(43): 51333-51342, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34696589

RESUMEN

High aspect ratio two-dimensional Ti3C2Tx MXene flakes with extraordinary mechanical, electrical, and thermal properties are ideal candidates for assembling elastic and conductive aerogels. However, the scalable fabrication of large MXene-based aerogels remains a challenge because the traditional preparation method relies on supercritical drying techniques such as freeze drying, resulting in poor scalability and high cost. Herein, the use of porous melamine foam as a robust template for MXene/reduced graphene oxide aerogel circumvents the volume shrinkage during its natural drying process. Through this approach, we were able to produce large size (up to 600 cm3) MXene-based aerogel with controllable shape. In addition, the aerogels possess an interconnected cellular structure and display resilience up to 70% of compressive strain. Some key features also include high solvent absorption capacity (∼50-90 g g-1), good photothermal conversion ability (an average evaporation rate of 1.48 kg m-2 h-1 for steam generation), and an excellent electrothermal conversion rate (1.8 kg m-2 h-1 at 1 V). More importantly, this passive drying process provides a scalable, convenient, and cost-effective approach to produce high-performance MXene-based aerogels, demonstrating the feasibility of commercial production of MXene-based aerogels toward practical applications.

15.
ACS Appl Mater Interfaces ; 13(29): 34679-34685, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34261305

RESUMEN

In recent years, two-dimensional (2D) nanomaterials have been extensively explored in the field of nanofluidics due to their interconnected and well-controlled nanochannels. In particular, the investigation of 2D nanomaterials using their intrinsic properties for smart nanofluidics is receiving increased interest. Here, we report that MoS2 membranes can be used for light-controlled nanofluidic applications based on their photoelectrical properties. We show that the MoS2 membranes exhibit surface charge-governed ionic transport in NaCl and KCl solution without light illumination, while the ionic conductivity of the MoS2 membranes is up to 2 orders of magnitude higher at low concentration solution than that in bulk solution. We also show that the ionic conductivity of the membranes is enhanced under light illumination at 405 and 635 nm and reversible and stable switching of ionic current upon light illumination is observed. In addition, ionic current through membranes is enhanced by increasing light intensity. Therefore, our findings demonstrate that MoS2 membranes can be a potential platform for light-controlled nanofluidic applications.

16.
ACS Appl Mater Interfaces ; 13(31): 36655-36669, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34320810

RESUMEN

The increasing interest toward wearable and portable electronic devices calls for multifunctional materials and fibers/yarns capable of seamless integration with everyday textiles. To date, one particular gap inhibiting the development of such devices is the production of robust functional fibers with improved electronic conductivity and electrochemical energy storage capability. Recent efforts have been made to produce functional fibers with 2D carbides known as MXenes to address these demands. Ti3C2Tx MXene, in particular, is known for its metallic conductivity and high volumetric capacitance, and has shown promise for fibers and textile-based devices when used either as an additive, coating or the main fiber component. In this spotlight article, we highlight the recent exciting developments in our diverse efforts to fabricate MXene functionalized fibers, along with a critical evaluation of the challenges in processing, which directly affect macroscale material properties and the performance of the subsequent prototype devices. We also provide our assessment of observed and foreseen challenges of the current manufacturing methods and the opportunities arising from recent advances in the development of MXene fibers and paving future avenues for textile design and practical use in advanced applications.

17.
Nat Commun ; 12(1): 3171, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039975

RESUMEN

Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy-intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti3C2Tx MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting performance, with a measured piezoelectric charge coefficient, d33, of -52.0 picocoulombs per newton, significantly higher than electrically poled PVDF-TrFE (approximately -38 picocoulombs per newton). This study provides a new fundamental and low-energy input mechanism of poling fluoropolymers, which enables new levels of performance in electromechanical technologies.

18.
ChemSusChem ; 14(8): 1805-1820, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33665947

RESUMEN

The integrated capture and conversion of CO2 has the potential to make valorization of the greenhouse gas more economically competitive, by eliminating energy-intensive regeneration processes. However, integration is hindered by the extremely low concentrations of CO2 present in the atmosphere (0.04 vol.%), and the presence of acidic gas contaminants, such as SOx and NOx , in flue gas streams. This Review summarizes the latest technological progress in the integrated capture and conversion of CO2 from dilute flue gases and atmospheric air. In particular, the Review analyzes the correlation between material properties and their capture and conversion efficiency through hydrogenation, cycloaddition, and solar thermal-mediated electrochemical processes, with a focus on the types and quantities of product generated, in addition to their energy requirements. Prospects for commercialization are also highlighted and suggestions are made for future research.

19.
J Colloid Interface Sci ; 592: 455-467, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711647

RESUMEN

In this work, MgCo2O4@NiMn layered double hydroxide (LDH) core-shell structured nanocomposites on Ni foam (NF) are synthesized by facile hydrothermal and calcination methods. MgCo2O4/NF is synthesized first via a hydrothermal reaction and annealing treatment, and then utilized to prepare MgCo2O4@NiMn-LDH/NF core-shell structured nanocomposites via the second hydrothermal process. It is found that the MgCo2O4@NiMn-LDH/NF nanocomposite prepared from 6 h hydrothermal reaction (MC@NM-LDH-2) exhibits an excellent specific capacitance of 3757.2 F g-1 (at 1 A g-1). Moreover, a high capacitance retention (86.9% after 6000 cycles) and a low internal resistance (Rs) (0.565 Ω) can be achieved. Furthermore, an all-solid-state asymmetric supercapacitor (ASC) is assembled using MgCo2O4@NiMn-LDH/NF-2 as positive electrode and activated carbon (AC) as negative electrode. The as-fabricated MgCo2O4@NiMn-LDH/NF-2//AC ASC shows a high energy density of 62.33 Wh kg-1 at 750 W kg-1. Meanwhile, the MgCo2O4@NiMn-LDH/NF-2//AC ASC device possesses an outstanding cycling stability of 93.7% retention of the initial capacitance after 6000 cycles and three ASC devices connected in series can light up a LED bulb for 15 min. Our results manifest that these core-shell structure MgCo2O4@NiMn-LDH nanocomposites could envision huge potential application in energy storage devices.

20.
ACS Nano ; 15(3): 5000-5010, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33635074

RESUMEN

Superelastic aerogels with excellent electrical conductivity, reversible compressibility, and high durability hold great potential for varied emerging applications, ranging from wearable electronics to multifunctional scaffolds. In the present work, superelastic MXene/reduced graphene oxide (rGO) aerogels are fabricated by mixing MXene and GO flakes, followed by a multistep reduction of GO, freeze-casting, and finally an annealing process. By optimizing both the composition and reducing conditions, the resultant aerogel shows a reversible compressive strain of 95%, surpassing all current reported values. The conducting MXene/rGO network provides fast electron transfer and stable structural integrity under compression/release cycles. When assembled into compressible supercapacitors, 97.2% of the capacitance was retained after 1000 compression/release cycles. Moreover, the high conductivity and porous structure also enabled the fabrication of a piezoresistive sensor with high sensitivity (0.28 kPa-1), wide detection range (up to 66.98 kPa), and ultralow detection limit (∼60 Pa). It is envisaged that the superelasticity of MXene/rGO aerogels offers a versatile platform for utilizing MXene-based materials in a wide array of applications including wearable electronics, electromagnetic interference shielding, and flexible energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...