Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(6): e3002151, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310918

RESUMEN

The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.


Asunto(s)
COVID-19 , Mpox , Infección por el Virus Zika , Virus Zika , Humanos , COVID-19/epidemiología , Pandemias , SARS-CoV-2/genética , Genómica
2.
medRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36299420

RESUMEN

The 2022 multi-country monkeypox (mpox) outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and rapid pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR cycle threshold below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.

3.
MMWR Morb Mortal Wkly Rep ; 71(22): 734-742, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35653347

RESUMEN

Certain laboratorians and health care personnel can be exposed to orthopoxviruses through occupational activities. Because orthopoxvirus infections resulting from occupational exposures can be serious, the Advisory Committee on Immunization Practices (ACIP) has continued to recommend preexposure vaccination for these persons since 1980 (1), when smallpox was eradicated (2). In 2015, ACIP made recommendations for the use of ACAM2000, the only orthopoxvirus vaccine available in the United States at that time (3). During 2020-2021, ACIP considered evidence for use of JYNNEOS, a replication-deficient Vaccinia virus vaccine, as an alternative to ACAM2000. In November 2021, ACIP unanimously voted in favor of JYNNEOS as an alternative to ACAM2000 for primary vaccination and booster doses. With these recommendations for use of JYNNEOS, two vaccines (ACAM2000 and JYNNEOS) are now available and recommended for preexposure prophylaxis against orthopoxvirus infection among persons at risk for such exposures.


Asunto(s)
Mpox , Exposición Profesional , Orthopoxvirus , Viruela , Vacunas , Comités Consultivos , Humanos , Inmunización , Viruela/prevención & control , Estados Unidos/epidemiología , Vacunación , Virus Vaccinia
4.
Commun Biol ; 5(1): 439, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545661

RESUMEN

SARS-CoV-2 variants shaped the second year of the COVID-19 pandemic and the discourse around effective control measures. Evaluating the threat posed by a new variant is essential for adapting response efforts when community transmission is detected. In this study, we compare the dynamics of two variants, Alpha and Iota, by integrating genomic surveillance data to estimate the effective reproduction number (Rt) of the variants. We use Connecticut, United States, in which Alpha and Iota co-circulated in 2021. We find that the Rt of these variants were up to 50% larger than that of other variants. We then use phylogeography to show that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of Alpha were larger than those resulting from Iota introductions. By monitoring the dynamics of individual variants throughout our study period, we demonstrate the importance of routine surveillance in the response to COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Genómica , Humanos , Pandemias , SARS-CoV-2/genética , Estados Unidos/epidemiología
5.
Nat Med ; 28(3): 481-485, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35051990

RESUMEN

The recent emergence of the SARS-CoV-2 Omicron variant is raising concerns because of its increased transmissibility and its numerous spike mutations, which have the potential to evade neutralizing antibodies elicited by COVID-19 vaccines. Here we evaluated the effects of a heterologous BNT162b2 mRNA vaccine booster on the humoral immunity of participants who had received a two-dose regimen of CoronaVac, an inactivated vaccine used globally. We found that a heterologous CoronaVac prime vaccination of two doses followed by a BNT162b2 booster induces elevated virus-specific antibody levels and potent neutralization activity against the ancestral virus and the Delta variant, resembling the titers obtained after two doses of mRNA vaccines. Although neutralization of Omicron was undetectable in participants who had received a two-dose regimen of CoronaVac, the BNT162b2 booster resulted in a 1.4-fold increase in neutralization activity against Omicron compared with the two-dose mRNA vaccine. Despite this increase, neutralizing antibody titers were reduced by 7.1-fold and 3.6-fold for Omicron compared with the ancestral strain and the Delta variant, respectively. These findings have immediate implications for multiple countries that previously used a CoronaVac regimen and reinforce the idea that the Omicron variant is associated with immune escape from vaccines or infection-induced immunity, highlighting the global need for vaccine boosters to combat the impact of emerging variants.


Asunto(s)
Vacuna BNT162 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
6.
Front Vet Sci ; 8: 744055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869720

RESUMEN

The objective of this study was to determine sources of Shiga toxin-producing Escherichia coli O157 (STEC O157) infection among visitors to Farm X and develop public health recommendations. A case-control study was conducted. Case-patients were defined as the first ill child (aged <18 years) in the household with laboratory-confirmed STEC O157, or physician-diagnosed hemolytic uremic syndrome with laboratory confirmation by serology, who visited Farm X in the 10 days prior to illness. Controls were selected from Farm X visitors aged <18 years, without symptoms during the same time period as case-patients. Environment and animal fecal samples collected from Farm X were cultured; isolates from Farm X were compared with patient isolates using whole genome sequencing (WGS). Case-patients were more likely than controls to have sat on hay bales at the doe barn (adjusted odds ratio: 4.55; 95% confidence interval: 1.41-16.13). No handwashing stations were available; limited hand sanitizer was provided. Overall, 37% (29 of 78) of animal and environmental samples collected were positive for STEC; of these, 62% (18 of 29) yielded STEC O157 highly related by WGS to patient isolates. STEC O157 environmental contamination and fecal shedding by goats at Farm X was extensive. Farms should provide handwashing stations with soap, running water, and disposable towels. Access to animal areas, including animal pens and enclosures, should be limited for young children who are at risk for severe outcomes from STEC O157 infection. National recommendations should be adopted to reduce disease transmission.

7.
medRxiv ; 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34230938

RESUMEN

Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health discourse around effective control measures. Evaluating the public health threat posed by a new variant is essential for appropriately adapting response efforts when community transmission is detected. However, this assessment requires that a true comparison can be made between the new variant and its predecessors because factors other than the virus genotype may influence spread and transmission. In this study, we develop a framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R t ) of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. We find that the R t of B.1.1.7 was 6-10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses open-source methods requiring minimal computational resources, may be used to monitor near real-time variant dynamics in a myriad of settings.

8.
PLoS Biol ; 19(5): e3001236, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33961632

RESUMEN

With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Cartilla de ADN , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación , Poliproteínas/genética , Proteínas Virales/genética
9.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33891875

RESUMEN

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Asunto(s)
Prueba de COVID-19 , COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidad , COVID-19/transmisión , Femenino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología
10.
medRxiv ; 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33758901

RESUMEN

With the emergence of SARS-CoV-2 variants that may increase transmissibility and/or cause escape from immune responses 1-3 , there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant first detected in the UK 4,5 could be serendipitously detected by the ThermoFisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern that lack spike Δ69-70, such as B.1.351 (also 501Y.V2) detected in South Africa 6 and P.1 (also 501Y.V3) recently detected in Brazil 7 . We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all three variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open source PCR assay to detect SARS-CoV-2 variants of concern 8 . Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence spread of B.1.1.7, B.1.351, and P.1.

11.
medRxiv ; 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33594373

RESUMEN

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2500 COVID-19 cases associated with this variant have been detected in the US since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight the primary ports of entry for B.1.1.7 in the US and locations of possible underreporting of B.1.1.7 cases. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.

12.
medRxiv ; 2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32511630

RESUMEN

Since its emergence and detection in Wuhan, China in late 2019, the novel coronavirus SARS-CoV-2 has spread to nearly every country around the world, resulting in hundreds of thousands of infections to date. The virus was first detected in the Pacific Northwest region of the United States in January, 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the U.S., we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated impacts of federal travel restrictions. This study provides evidence for widespread, sustained transmission of SARS-CoV-2 within the U.S. and highlights the critical need for local surveillance.

13.
Cell ; 181(5): 990-996.e5, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32386545

RESUMEN

The novel coronavirus SARS-CoV-2 was first detected in the Pacific Northwest region of the United States in January 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the United States, we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated effects of federal travel restrictions. This study provides evidence of widespread sustained transmission of SARS-CoV-2 within the United States and highlights the critical need for local surveillance.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/transmisión , Neumonía Viral/transmisión , Viaje , Betacoronavirus/aislamiento & purificación , COVID-19 , Connecticut/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Monitoreo Epidemiológico , Humanos , Funciones de Verosimilitud , Pandemias , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/virología , SARS-CoV-2 , Viaje/legislación & jurisprudencia , Estados Unidos/epidemiología , Washingtón/epidemiología
16.
J Med Microbiol ; 67(1): 68-73, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29219803

RESUMEN

PURPOSE: Neisseria gonorrhoeae is a sexually transmitted bacterial pathogen that continues to evolve to become resistant to known antibiotics. In preparing for potential emergence, the Centers for Disease Control and Prevention recommends that clinical laboratories maintain or develop protocols to assess antibiotic susceptibly for this organism. This study examines the intra-laboratory variability of using the Etest method to provide consistent MIC values for N. gonorrhoeae and also compared the results of the Etest to known agar dilution MIC values. METHODOLOGY: Clinical N. gonorrhoeae isolates, 100 paired duplicates, were tested by eight laboratories for antibiotic susceptibility to ceftriaxone, cefixime and azithromycin using Etest strips.Results/Key findings. Overall, >80 % of the paired Etest MIC values were within one log2 dilution of the replicate. When compared to the agar dilution reference method, the cefixime Etest MIC values were consistently underreported by one dilution (seven laboratories) or two dilutions (one laboratory). The azithromycin Etest MIC values agreed 90.7 % with the agar dilution MIC values while the agreement with ceftriaxone was 90.9 %. CONCLUSION: Overall, the Etest method yielded reproducible MIC values within each laboratory with the azithromycin and ceftriaxone MIC results consistent to the reference agar dilution method while the cefixime result tended to provide a lower MIC value.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/aislamiento & purificación , Azitromicina/farmacología , Cefixima/farmacología , Ceftriaxona/farmacología , Gonorrea/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Reproducibilidad de los Resultados
18.
J Clin Microbiol ; 54(5): 1209-15, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26962088

RESUMEN

The use of culture-independent diagnostic tests (CIDTs), such as stool antigen tests, as standalone tests for the detection of Campylobacter in stool is increasing. We conducted a prospective, multicenter study to evaluate the performance of stool antigen CIDTs compared to culture and PCR for Campylobacter detection. Between July and October 2010, we tested 2,767 stool specimens from patients with gastrointestinal illness with the following methods: four types of Campylobacter selective media, four commercial stool antigen assays, and a commercial PCR assay. Illnesses from which specimens were positive by one or more culture media or at least one CIDT and PCR were designated "cases." A total of 95 specimens (3.4%) met the case definition. The stool antigen CIDTs ranged from 79.6% to 87.6% in sensitivity, 95.9 to 99.5% in specificity, and 41.3 to 84.3% in positive predictive value. Culture alone detected 80/89 (89.9% sensitivity) Campylobacter jejuni/Campylobacter coli-positive cases. Of the 209 noncases that were positive by at least one CIDT, only one (0.48%) was positive by all four stool antigen tests, and 73% were positive by just one stool antigen test. The questionable relevance of unconfirmed positive stool antigen CIDT results was supported by the finding that noncases were less likely than cases to have gastrointestinal symptoms. Thus, while the tests were convenient to use, the sensitivity, specificity, and positive predictive value of Campylobacter stool antigen tests were highly variable. Given the relatively low incidence of Campylobacter disease and the generally poor diagnostic test characteristics, this study calls into question the use of commercially available stool antigen CIDTs as standalone tests for direct detection of Campylobacter in stool.


Asunto(s)
Técnicas Bacteriológicas/métodos , Infecciones por Campylobacter/diagnóstico , Campylobacter/aislamiento & purificación , Pruebas Diagnósticas de Rutina/métodos , Heces/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Campylobacter/genética , Campylobacter/crecimiento & desarrollo , Niño , Preescolar , Femenino , Humanos , Inmunoensayo/métodos , Lactante , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Sensibilidad y Especificidad , Adulto Joven
19.
Lancet Infect Dis ; 15(12): 1485-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26607130

RESUMEN

Extensively drug-resistant (XDR) tuberculosis is becoming increasingly prevalent worldwide, but little is known about XDR tuberculosis in young children. In this Grand Round we describe a 2-year-old child from the USA who developed pneumonia after a 3 month visit to India. Symptoms resolved with empirical first-line tuberculosis treatment; however, a XDR strain of Mycobacterium tuberculosis grew in culture. In the absence of clinical or microbiological markers, low-radiation exposure pulmonary CT imaging was used to monitor treatment response, and guide an individualised drug regimen. Management was complicated by delays in diagnosis, uncertainties about drug selection, and a scarcity of child-friendly formulations. Treatment has been successful so far, and the child is in remission. This report of XDR tuberculosis in a young child in the USA highlights the risks of acquiring drug-resistant tuberculosis overseas, and the unique challenges in management of tuberculosis in this susceptible population.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Neumonía Bacteriana/diagnóstico , Tuberculosis Pulmonar/diagnóstico , Antituberculosos/uso terapéutico , Preescolar , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico por imagen , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Femenino , Humanos , India , Mycobacterium tuberculosis/patogenicidad , Mycobacterium tuberculosis/fisiología , Neumonía Bacteriana/diagnóstico por imagen , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Radiografía , Viaje , Tuberculosis Pulmonar/diagnóstico por imagen , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Estados Unidos
20.
Environ Res ; 114: 31-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22406288

RESUMEN

Salmonella outbreaks associated with the consumption of raw tomatoes have been prevalent in recent years. However, sources of Salmonella contamination of tomatoes remain poorly understood. The objectives of this study were to identify ecological reservoirs of Salmonella on tomato farms, and to test antimicrobial susceptibilities of recovered Salmonella isolates. Fourteen Mid-Atlantic tomato farms in the U.S. were sampled in 2009 and 2010. Groundwater, irrigation pond water, pond sediment, irrigation ditch water, rhizosphere and irrigation ditch soil, leaves, tomatoes, and swabs of harvest bins and worker sanitary facilities were analyzed for Salmonella using standard culture methods and/or a flow-through immunocapture method. All presumptive Salmonella isolates (n=63) were confirmed using PCR and the Vitek(®) 2 Compact System, and serotyped using the Premi(®)Test Salmonella and a conventional serotyping method. Antimicrobial susceptibility testing was carried out using the Sensititre™ microbroth dilution system. Four of the 14 farms (29%) and 12 out of 1,091 samples (1.1%) were found to harbor Salmonella enterica subsp. enterica. Salmonella was isolated by the immunocapture method from soil, while the culture method recovered isolates from irrigation pond water and sediment, and irrigation ditch water. No Salmonella was detected on leaves or tomatoes. Multiple serotypes were identified from soil and water, four of which-S. Braenderup, S. Javiana, S. Newport and S. Typhimurium-have been previously implicated in Salmonella outbreaks associated with tomato consumption. Resistance to sulfisoxazole was prevalent and some resistance to ampicillin, cefoxitin, amoxicillin/clavulanic acid, and tetracycline was also observed. This study implicates irrigation water and soil as possible reservoirs of Salmonella on tomato farms and irrigation ditches as ephemeral habitats for Salmonella. The findings point to the potential for pre-harvest contamination of tomatoes from contaminated irrigation water or from soil or water splash from irrigation ditches onto low-lying portions of tomato plants.


Asunto(s)
Agricultura , Farmacorresistencia Bacteriana , Sedimentos Geológicos/microbiología , Salmonella/efectos de los fármacos , Riego Agrícola , Microbiología de Alimentos/métodos , Solanum lycopersicum , Mid-Atlantic Region , Salmonella/clasificación , Sensibilidad y Especificidad , Microbiología del Suelo , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA