Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(13): 8615-8640, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38495977

RESUMEN

M1 muscarinic acetylcholine receptor (M1-AChR), a member of the G protein-coupled receptors (GPCR) family, plays a crucial role in learning and memory, making it an important drug target for Alzheimer's disease (AD) and schizophrenia. M1-AChR activation and deactivation have shown modifying effects in AD and PD preclinical models, respectively. However, understanding the pharmacology associated with M1-AChR activation or deactivation is complex, because of the low selectivity among muscarinic subtypes, hampering their therapeutic applications. In this regard, we constructed two quantitative structure-activity relationship (QSAR) models, one for M1-AChR agonists (total and partial), and the other for the antagonists. The binding mode of 59 structurally different compounds, including agonists and antagonists with experimental binding affinity values (pKi), were analyzed employing computational molecular docking over different structures of M1-AChR. Furthermore, we considered the interaction energy (Einter), the number of rotatable bonds (NRB), and lipophilicity (ilogP) for the construction of the QSAR model for agonists (R2 = 89.64, QLMO2 = 78, and Qext2 = 79.1). For the QSAR model of antagonists (R2 = 88.44, QLMO2 = 82, and Qext2 = 78.1) we considered the Einter, the fraction of sp3 carbons fCsp3, and lipophilicity (MlogP). Our results suggest that the ligand volume is a determinant to establish its biological activity (agonist or antagonist), causing changes in binding energy, and determining the affinity for M1-AChR.

2.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38139774

RESUMEN

Cervical cancer is a malignant neoplastic disease, mainly associated to HPV infection, with high mortality rates. Among natural products, iridoids have shown different biological activities, including cytotoxic and antitumor effects, in different cancer cell types. Geniposide and its aglycone Genipin have been assessed against different types of cancer. In this work, both iridoids were evaluated against HeLa and three different cervical cancer cell lines. Furthermore, we performed a SAR analysis incorporating 13 iridoids with a high structural similarity to Geniposide and Genipin, also tested in the HeLa cell line and at the same treatment time. Derived from this analysis, we found that the dipole moment (magnitude and direction) is key for their cytotoxic activity in the HeLa cell line. Then, we proceeded to the ligand-based design of new Genipin derivatives through a QSAR model (R2 = 87.95 and Q2 = 62.33) that incorporates different quantum mechanic molecular descriptor types (ρ, ΔPSA, ∆Polarizability2, and logS). Derived from the ligand-based design, we observed that the presence of an aldehyde or a hydroxymethyl in C4, hydroxyls in C1, C6, and C8, and the lack of the double bond in C7-C8 increased the predicted biological activity of the iridoids. Finally, ten simple iridoids (D9, D107, D35, D36, D55, D56, D58, D60, D61, and D62) are proposed as potential cytotoxic agents against the HeLa cell line based on their predicted IC50 value and electrostatic features.

3.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38139814

RESUMEN

Among the biological targets extensively investigated to improve inflammation and chronic inflammatory conditions, cyclooxygenase enzymes (COXs) occupy a prominent position. The inhibition of these enzymes, essential for mitigating inflammatory processes, is chiefly achieved through Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). In this work, we introduce a novel method-based on computational molecular docking-that could aid in the structure-based design of new compounds or the description of the anti-inflammatory activity of already-tested compounds. For this, we used eight crystal complexes (four COX-1 and COX-2 each), and each pair had a specific NSAID: Celecoxib, Meloxicam, Ibuprofen, and Indomethacin. This selection was based on the ligand selectivity towards COX-1 or COX-2 and their binding mode. An interaction profile of each NSAID was compiled to detect the residues that are key for their binding mode, highlighting the interaction made by the Me group. Furthermore, we rigorously validated our models based on structural accuracy (RMSD < 1) and (R2 > 70) using eight NSAIDs and thirteen compounds with IC50 values for each enzyme. Therefore, this model can be used for the binding mode prediction of small and structurally rigid compounds that work as COX inhibitors or the prediction of new compounds that are designed by means of a structure-based approach.

4.
Molecules ; 28(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513358

RESUMEN

In this work, we carried out the design and synthesis of new chimeric compounds from the natural cytotoxic chalcone 2',4'-dihydroxychalcone (2',4'-DHC, A) in combination with cinnamic acids. For this purpose, a descriptive and predictive quantitative structure-activity relationship (QSAR) model was developed to study the chimeric compounds' anti-cancer activities against human breast cancer MCF-7, relying on the presence or absence of structural motifs in the chalcone structure, like in a Free-Wilson approach. For this, we used 207 chalcone derivatives with a great variety of structural modifications over the α and ß rings, such as halogens (F, Cl, and Br), heterocyclic rings (piperazine, piperidine, pyridine, etc.), and hydroxyl and methoxy groups. The multilinear equation was obtained by the genetic algorithm technique, using logIC50 as a dependent variable and molecular descriptors (constitutional, topological, functional group count, atom-centered fragments, and molecular properties) as independent variables, with acceptable statistical parameter values (R2 = 86.93, Q2LMO = 82.578, Q2BOOT = 80.436, and Q2EXT = 80.226), which supports the predictive ability of the model. Considering the aromatic and planar nature of the chalcone and cinnamic acid cores, a structural-specific QSAR model was developed by incorporating geometrical descriptors into the previous general QSAR model, again, with acceptable parameters (R2 = 85.554, Q2LMO = 80.534, Q2BOOT = 78.186, and Q2EXT = 79.41). Employing this new QSAR model over the natural parent chalcone 2',4'-DHC (A) and the chimeric compound 2'-hydroxy,4'-cinnamate chalcone (B), the predicted cytotoxic activity was achieved with values of 55.95 and 17.86 µM, respectively. Therefore, to corroborate the predicted cytotoxic activity compounds A and B were synthesized by two- and three-step reactions. The structures were confirmed by 1H and 13C NMR and ESI+MS analysis and further evaluated in vitro against HepG2, Hep3B (liver), A-549 (lung), MCF-7 (breast), and CasKi (cervical) human cancer cell lines. The results showed IC50 values of 11.89, 10.27, 56.75, 14.86, and 29.72 µM, respectively, for the chimeric cinnamate chalcone B. Finally, we employed B as a molecular scaffold for the generation of cinnamate candidates (C-K), which incorporated structural motifs that enhance the cytotoxic activity (pyridine ring, halogens, and methoxy groups) according to our QSAR model. ADME/tox in silico analysis showed that the synthesized compounds A and B, as well as the proposed chalcones C and G, are the best candidates with adequate drug-likeness properties. From all these results, we propose B (as a molecular scaffold) and our two QSAR models as reliable tools for the generation of anti-cancer compounds over the MCF-7 cell line.


Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Humanos , Células MCF-7 , Chalcona/farmacología , Chalconas/química , Cinamatos/farmacología , Antineoplásicos/química , Piridinas/farmacología , Proliferación Celular , Relación Estructura-Actividad , Línea Celular Tumoral , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37259397

RESUMEN

As the rate of discovery of new antibacterial compounds for multidrug-resistant bacteria is declining, there is an urge for the search for molecules that could revert this tendency. Acinetobacter baumannii has emerged as a highly virulent Gram-negative bacterium that has acquired multiple resistance mechanisms against antibiotics and is considered of critical priority. In this work, we developed a quantitative structure-property relationship (QSPR) model with 592 compounds for the identification of structural parameters related to their property as antibacterial agents against A. baumannii. QSPR mathematical validation (R2 = 70.27, RN = -0.008, a(R2) = 0.014, and δK = 0.021) and its prediction ability (Q2LMO= 67.89, Q2EXT = 67.75, a(Q2) = -0.068, δQ = 0.0, rm2¯ = 0.229, and Δrm2 = 0.522) were obtained with different statistical parameters; additional validation was done using three sets of external molecules (R2 = 72.89, 71.64 and 71.56). We used the QSPR model to perform a virtual screening on the BIOFACQUIM natural product database. From this screening, our model showed that molecules 32 to 35 and 54 to 68, isolated from different extracts of plants of the Ipomoea sp., are potential antibacterials against A. baumannii. Furthermore, biological assays showed that molecules 56 and 60 to 64 have a wide antibacterial activity against clinically isolated strains of A. baumannii, as well as other multidrug-resistant bacteria, including Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Finally, we propose 60 as a potential lead compound due to its broad-spectrum activity and its structural simplicity. Therefore, our QSPR model can be used as a tool for the investigation and search for new antibacterial compounds against A. baumannii.

6.
J Mol Struct ; 1274: 134507, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406777

RESUMEN

This study was designed to synthesize hybridizing molecules from ciprofloxacin and norfloxacin by enhancing their biological activity with tetrazoles. The synthesized compounds were investigated in the interaction with the target enzyme of fluoroquinolones (DNA gyrase) and COVID-19 main protease using molecular similarity, molecular docking, and QSAR studies. A QSAR study was carried out to explore the antibacterial activity of our compounds over Staphylococcus aureus a QSAR study, using descriptors obtained from the docking with DNA gyrase, in combination with steric type descriptors, was done obtaining suitable statistical parameters ( R 2 = 87.00 , Q L M O 2 = 71.67 , and Q E X T 2 = 73.49 ) to support our results. The binding interaction of our compounds with CoV-2-Mpro was done by molecular docking and were compared with different covalent and non-covalent inhibitors of this enzyme. For the docking studies we used several crystallographic structures of the CoV-2-Mpro. The interaction energy values and binding mode with several key residues, by our compounds, support the capability of them to be CoV-2-Mpro inhibitors. The characterization of the compounds was completed using FT-IR, 1H-NMR, 13C-NMR, 19F-NMR and HRMS spectroscopic methods. The results showed that compounds 1, 4, 5, 10 and 12 had the potential to be further studied as new antibacterial and antiviral compounds.

7.
Mol Inform ; 42(1): e2200016, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36065495

RESUMEN

Cervical cancer is one of the most aggressive and important cancer types in the female population, due to its low survival rate. Actually, the search for new bioactive compounds, like gallic and cinnamic acid, is one of the most employed options to finding a treatment. In the present study, 134 phenolic compounds with cytotoxic activity over HeLa cell line were used to generate a descriptive ( R 2 ${{R}^{2}}$ =0.76) and predictive ( Q 2 ${{Q}^{2}}$ =0.69 and Q e x t 2 ${{Q}_{{\rm e}{\rm x}{\rm t}}^{2}}$ =0.62) QSAR model. Structural, electronic, steric, and hydrophobic features are represented as different molecular descriptors in our QSAR model. From this model, nine gallate-cinnamate ester derivatives (N1-N9) were designed and synthesized. Furthermore, in vitro cytotoxic activity was evaluated against HeLa and non-tumorigenic cells. Derivatives N6, N5, N1, and N9 were the most active molecules with IC50ExpHeLa values from 7.26 to 11.95 µM. Finally, the binding of the synthesized compounds to the colchicine binding site on tubulin was evaluated by molecular docking as a possible action mechanism. N1, N5 and N6 can be considered as templates for the design of new cervical anticancer compounds.


Asunto(s)
Antineoplásicos , Relación Estructura-Actividad Cuantitativa , Femenino , Humanos , Células HeLa , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Cinamatos/farmacología , Cinamatos/química
8.
J Nat Prod ; 85(4): 787-803, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35175765

RESUMEN

In this study, a series of novel 3-seco-A derivatives of the natural triterpenes α-amyrin (1) and 3-epilupeol (2) were synthesized by a one-pot radical scission-oxidation procedure and evaluated in vitro and in vivo for their capacity to inhibit the inflammatory process. For the in vitro studies, the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f) were consistently effective in inhibiting NO, IL-6, and TNF-α secretion, as well as inhibition of NF-κB activation, in RAW cells stimulated by LPS. The further in vivo anti-inflammatory study revealed that the trans-4-hydroxy-l-proline methyl ester derivatives (1f and 2f), together with 1g, were the most effective in inhibiting TPA-induced edema. Interestingly, the α-amyrin derivatives were the most potent inhibitors of COX-2, but inhibited COX-1 only to some extent. The hydroxyl derivative (1c) was selective for COX-2 inhibition (66.3 ± 1.1% at 17.5 µM) without affecting the COX-1 isoform and did not present toxicity. Molecular docking studies revealed that these compounds bind with their polar region in the cavity over Arg-120, and their lipophilic part is orientated to the HEM cofactor similarly to the natural substrate arachidonic acid in the catalytic site of COX-2. These results indicated that seco-A ursane derivatives could be considered promising candidates for the future development of selective NF-κB and COX-2 inhibitors.


Asunto(s)
FN-kappa B , Ácido Oleanólico , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Ésteres , Hidroxiprolina , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Ácido Oleanólico/farmacología , Triterpenos Pentacíclicos
9.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946697

RESUMEN

Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.


Asunto(s)
Antifúngicos/química , Aspergillus fumigatus/enzimología , Quitinasas , Inhibidores Enzimáticos/química , Proteínas Fúngicas , Simulación del Acoplamiento Molecular , Quitinasas/antagonistas & inhibidores , Quitinasas/química , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química , Hexosaminidasas/antagonistas & inhibidores , Hexosaminidasas/química
10.
J Org Chem ; 86(23): 16361-16368, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34738814

RESUMEN

Kinetically controlled cyclocondensation of stereoisomeric and ring-chain tautomeric mixture of (±)-hydroxylactone 1 and 0.5 equiv of (R)-phenylglycinol provided tricyclic oxazoloisoindolone lactam (3R,5aS,9aR,9bS)-2a, a versatile intermediate for further stereocontrolled transformations to access enantiopure cis-fused octahydroisoindolones. An extension of this methodology was successfully applied to the synthesis of the 5,6-dihydroxy derivative (3aR,5R,6S,7aS)-17.


Asunto(s)
Lactamas , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...