RESUMEN
Frameworks for limiting ecosystem exposure to excess nutrients and acidity require accurate and complete deposition budgets of reactive nitrogen (Nr). While much progress has been made in developing total Nr deposition budgets for the U.S., current budgets remain limited by key data and knowledge gaps. Analysis of National Atmospheric Deposition Program Total Deposition (NADP/TDep) data illustrates several aspects of current Nr deposition that motivate additional research. Averaged across the continental U.S., dry deposition contributes slightly more (55%) to total deposition than wet deposition and is the dominant process (>90%) over broad areas of the Southwest and other arid regions of the West. Lack of dry deposition measurements imposes a reliance on models, resulting in a much higher degree of uncertainty relative to wet deposition which is routinely measured. As nitrogen oxide (NOx) emissions continue to decline, reduced forms of inorganic nitrogen (NHxâ¯=â¯NH3â¯+â¯NH4+) now contribute >50% of total Nr deposition over large areas of the U.S. Expanded monitoring and additional process-level research are needed to better understand NHx deposition, its contribution to total Nr deposition budgets, and the processes by which reduced N deposits to ecosystems. Urban and suburban areas are hotspots where routine monitoring of oxidized and reduced Nr deposition is needed. Finally, deposition budgets have incomplete information about the speciation of atmospheric nitrogen; monitoring networks do not capture important forms of Nr such as organic nitrogen. Building on these themes, we detail the state of the science of Nr deposition budgets in the U.S. and highlight research priorities to improve deposition budgets in terms of monitoring and flux measurements, leaf- to regional-scale modeling, source apportionment, and characterization of deposition trends and patterns.
RESUMEN
Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency (EPA)-sponsored 1998 Baltimore and 1999 Fresno PM exposure studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly (>65 years old) subjects. Integrated 24-hr filter-based PM2.5 or PM10 mass measurements [using Personal Environmental Monitors (PEMs)] included personal measurements, indoor and outdoor residential measurements, and measurements at a central indoor site and a community monitoring site. A subset of the participants in each study wore passive nephelometers that continuously measured (1-min averaging time) particles ranging in size from 0.1 to approximately 10 microm. Significant activities and locations were identified by a statistical mixed model (p < 0.01) for each study population based on the measured PM2.5 or PM10 mass and time activity data. Elevated PM concentrations were associated with traveling (car or bus), commercial locations (store, office, mall, etc.), restaurants, and working. The modeled results were compared to continuous PM concentrations determined by the nephelometers while participants were in these locations. Overall, the nephelometer data agreed within 6% of the modeled PM2.5 results for the Baltimore participants and within approximately 20% for the Fresno participants (variability was due to zero drift associated with the nephelometer). The nephelometer did not agree as well with the PM10 mass measurements, most likely because the nephelometer optimally responds to fine particles (0.3-2 microm). Approximately one-half (54 +/- 31%; mean +/- standard deviation from both studies) of the average daily PM2.5 exposure occurred inside residences, where the participants spent an average of 83 +/- 10% of their time. These data also showed that a significant portion of PM2.5 exposure occurred in locations where participants spent only 4-13% of their time.
Asunto(s)
Actividades Cotidianas , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Anciano , Anciano de 80 o más Años , Diseño de Equipo , Femenino , Humanos , Masculino , Tamaño de la Partícula , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , TransportesRESUMEN
In population exposure studies, personal exposure to PM is typically measured as a 12- to 24-hr integrated mass concentration. To better understand short-term variation in personal PM exposure, continuous (1-min averaging time) nephelometers were worn by 15 participants as part of two U.S. Environmental Protection Agency (EPA) longitudinal PM exposure studies conducted in Baltimore County, MD, and Fresno, CA. Participants also wore inertial impactor samplers (24-hr integrated filter samples) and recorded their daily activities in 15-min intervals. In Baltimore, the nephelometers correlated well (R2 = 0.66) with the PM2.5 impactors. Time-series plots of personal nephelometer data showed each participant's PM exposure to consist of a series of peaks of relatively short duration. Activities corresponding to a significant instrument response included cooking, outdoor activities, transportation, laundry, cleaning, shopping, gardening, moving between microenvironments, and removing/putting on the instrument. On average, 63-66% of the daily PM exposure occurred indoors at home (about 2/3 of which occurred during waking hours), primarily due to the large amount of time spent in that location (an average of 72-77%). Although not a reference method for measuring mass concentration, the nephelometer did help identify PM sources and the relative contribution of those sources to an individual's personal exposure.