Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 20(1): 91-100, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21988874

RESUMEN

We have designed a series of versatile lipopolyamines which are amenable to chemical modification for in vivo delivery of small interfering RNA (siRNA). This report focuses on one such lipopolyamine (Staramine), its functionalized derivatives and the lipid nanocomplexes it forms with siRNA. Intravenous (i.v.) administration of Staramine/siRNA nanocomplexes modified with methoxypolyethylene glycol (mPEG) provides safe and effective delivery of siRNA and significant target gene knockdown in the lungs of normal mice, with much lower knockdown in liver, spleen, and kidney. Although siRNA delivered via Staramine is initially distributed across all these organs, the observed clearance rate from the lung tissue is considerably slower than in other tissues resulting in prolonged siRNA accumulation on the timescale of RNA interference (RNAi)-mediated transcript depletion. Complete blood count (CBC) analysis, serum chemistry analysis, and histopathology results are all consistent with minimal toxicity. An in vivo screen of mPEG modified Staramine nanocomplexes-containing siRNAs targeting lung cell-specific marker proteins reveal exclusive transfection of endothelial cells. Safe and effective delivery of siRNA to the lung with chemically versatile lipopolyamine systems provides opportunities for investigation of pulmonary cell function in vivo as well as potential treatments of pulmonary disease with RNAi-based therapeutics.


Asunto(s)
Poliaminas Biogénicas/química , Pulmón/metabolismo , ARN Interferente Pequeño/administración & dosificación , Animales , Poliaminas Biogénicas/síntesis química , Poliaminas Biogénicas/metabolismo , Recuento de Células Sanguíneas , Femenino , Silenciador del Gen , Inyecciones Intravenosas , Pulmón/patología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Nanoconjugados/administración & dosificación , Nanoconjugados/efectos adversos , Nanoconjugados/química , Polietilenglicoles/química , ARN Interferente Pequeño/síntesis química , ARN Interferente Pequeño/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Transfección
2.
J Control Release ; 158(2): 269-76, 2012 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-22100441

RESUMEN

Exploitation of the RNA interference (RNAi) pathway offers the promise of new and effective therapies for a wide variety of diseases. Clinical development of new drugs based on this platform technology is still limited, however, by a lack of safe and efficient delivery systems. Here we report the development of a class of structurally versatile cationic lipopolyamines designed specifically for delivery of siRNA which show high levels of target transcript knockdown in a range of cell types in vitro. A primary benefit of these lipids is the ease with which they may be covalently modified by the addition of functional molecules. For in vivo applications one of the core lipids (Staramine) was modified with methoxypolyethylene glycols (mPEGs) of varying lengths. Upon systemic administration, PEGylated Staramine nanoparticles containing siRNA targeting the caveolin-1 (Cav-1) transcript caused a reduction of the Cav-1 transcript of up to 60%, depending on the mPEG length, specifically in lung tissue after 48h compared to treatment with non-silencing siRNA. In addition, modification with mPEG reduced toxicity associated with intravenous administration. The ability to produce a high level of target gene knockdown in the lung with minimal toxicity demonstrates the potential of these lipopolyamines for use in developing RNAi therapeutics for pulmonary disease.


Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/administración & dosificación , Poliaminas/administración & dosificación , ARN Interferente Pequeño/genética , Animales , Caveolina 1/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Lípidos/síntesis química , Ratones , Nanopartículas/administración & dosificación , Nanopartículas/química , Poliaminas/síntesis química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química
3.
Microcirculation ; 18(5): 380-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21418388

RESUMEN

OBJECTIVE: Particle adhesion in vivo is dependent on the microcirculation environment, which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called SMN, for characterizing particle adhesion patterns in the microcirculation. METHODS: SMNs were fabricated using soft-lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD-based modeling. RESULTS: Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5×) near bifurcations compared with the branches of the microvascular networks. CONCLUSION: Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. SMNs provide an in vitro framework for understanding particle adhesion.


Asunto(s)
Microesferas , Microvasos/fisiología , Modelos Cardiovasculares , Animales , Avidina/química , Biotina/química , Adhesión Celular/fisiología , Humanos , Microvasos/anatomía & histología
4.
J Control Release ; 146(2): 196-200, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20385181

RESUMEN

Development of novel carriers and optimization of their design parameters has led to significant advances in the field of targeted drug delivery. Since carrier shape has recently been recognized as an important design parameter for drug delivery, we sought to investigate how carrier shape influences their flow in the vasculature and their ability to target the diseased site. Idealized synthetic microvascular networks (SMNs) were used for this purpose since they closely mimic key physical aspects of real vasculature and at the same time offer practical advantages in terms of ease of use and direct observation of particle flow. The attachment propensities of surface functionalized spheres, elliptical/circular disks and rods with dimensions ranging from 1microm to 20microm were compared by flowing them through bifurcating SMNs. Particles of different geometries exhibited remarkably different adhesion propensities. Moreover, introduction of a bifurcation as opposed to the commonly used linear channel resulted in significantly different flow and adhesion behaviors, which may have important implications in correlating these results to in vivo behavior. This study provides valuable information for design of carriers for targeted drug delivery.


Asunto(s)
Portadores de Fármacos/metabolismo , Microvasos/metabolismo , Animales , Bovinos , Portadores de Fármacos/química , Modelos Biológicos , Albúmina Sérica Bovina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...