Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Transplant Cell Ther ; 29(3): 165.e1-165.e7, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36592718

RESUMEN

Chimeric antigen receptor (CAR) T cell (CAR-T) therapy represents a revolutionary treatment for patients with relapsed/refractory hematologic malignancies. However, its use can result in significant toxicities, including cytokine release syndrome (CRS), a potentially life-threatening clinical syndrome resulting from the release of proinflammatory cytokines upon T cell activation. In addition, patients who develop CRS often experience prolonged cytopenias, and those with the most severe CRS also have the longest delays in full marrow recovery. Although an association between CRS and delayed bone marrow recovery has been established, the precise mechanism underlying this phenomenon remains unknown. This study was conducted to test our hypothesis that delayed bone marrow recovery following CAR-T therapy is caused by elevation of proinflammatory cytokines, leading to apoptosis and depletion of hematopoietic stem and progenitor cells (HSPCs). SCID-beige mice bearing intraperitoneal CD19+ Raji cell tumors were treated with injection of human CD19.28z CAR T cells. Bone marrow was then harvested for analysis by flow cytometry, and HSPCs were isolated for whole-transcriptome analysis by RNA sequencing. Complete blood counts and serum cytokine levels were measured as well. A second model was developed in which SCID-beige mice were treated with murine IFN-γ (mIFN-γ), murine IL-6 (mIL-6), or both. Bone marrow was harvested, and flow cytometry assays were conducted to evaluate the degree of apoptosis and proliferation on specific HSPC populations. SCID-beige mice bearing intraperitoneal Raji cell tumors that were treated with CAR-T therapy developed CRS, with elevations of several proinflammatory cytokines, including profound elevation of human IFN-γ. Gene set enrichment analysis of RNA sequencing data revealed that genes associated with apoptosis were significantly upregulated in HSPCs from mice that developed CRS. Endothelial protein C receptor (EPCR)-negative HSCs, a subset of HSCs that is poised for terminal differentiation, was found to be specifically decreased in mice that were treated with CAR T cells. Furthermore, HSPCs were found to have increased levels of apoptosis upon treatment with mIFN-γ and mIL-6, whereas short-term HSCs and multipotent progenitors exhibited increases in proliferation with mIFN-γ treatment alone. The results from this study provide evidence that the elevation of proinflammatory cytokines following CAR-T therapy impacts the bone marrow through a combined mechanism: pluripotent HSCs that are exposed to elevated levels of IFN-γ and IL-6 undergo increased cell death, while more committed progenitor cells become more proliferative in response to elevated IFN-γ. These combined effects lead to depleted stores of repopulating HSCs and ultimately cytopenias. © 2023 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.


Asunto(s)
Enfermedades de la Médula Ósea , Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Apoptosis , Médula Ósea/patología , Enfermedades de la Médula Ósea/metabolismo , Enfermedades de la Médula Ósea/patología , Citocinas/metabolismo , Células Madre Hematopoyéticas , Interleucina-6/metabolismo , Ratones SCID , Inmunoterapia Adoptiva/efectos adversos
2.
JCI Insight ; 5(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32544094

RESUMEN

Wnt/ß-catenin signaling is active in small subpopulations of Ewing sarcoma cells, and these cells display a more metastatic phenotype, in part due to antagonism of EWS-FLI1-dependent transcriptional activity. Importantly, these ß-catenin-activated Ewing sarcoma cells also alter secretion of extracellular matrix (ECM) proteins. We thus hypothesized that, in addition to cell-autonomous mechanisms, Wnt/ß-catenin-active tumor cells might contribute to disease progression by altering the tumor microenvironment (TME). Analysis of transcriptomic data from primary patient biopsies and from ß-catenin-active versus -nonactive tumor cells identified angiogenic switch genes as being highly and reproducibly upregulated in the context of ß-catenin activation. In addition, in silico and in vitro analyses, along with chorioallantoic membrane assays, demonstrated that ß-catenin-activated Ewing cells secreted factors that promote angiogenesis. In particular, activation of canonical Wnt signaling leads Ewing sarcoma cells to upregulate expression and secretion of proangiogenic ECM proteins, collectively termed the angiomatrix. Significantly, our data show that induction of the angiomatrix by Wnt-responsive tumor cells is indirect and is mediated by TGF-ß. Mechanistically, Wnt/ß-catenin signaling antagonizes EWS-FLI1-dependent repression of TGF-ß receptor type 2, thereby sensitizing tumor cells to TGF-ß ligands. Together, these findings suggest that Wnt/ß-catenin-active tumor cells can contribute to Ewing sarcoma progression by promoting angiogenesis in the local TME.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Sarcoma de Ewing/metabolismo , Microambiente Tumoral/fisiología , Vía de Señalización Wnt/fisiología , Línea Celular Tumoral , Humanos , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/genética , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Regulación hacia Arriba
3.
Clin Lymphoma Myeloma Leuk ; 14(6): 460-467.e2, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25052052

RESUMEN

BACKGROUND: Patients with DLBCL exhibit widely divergent outcomes despite harboring histologically identical tumors. Currently, GEP and IHC algorithms assign patients to 1 of 2 main subtypes: germinal center B cell-like (GCB), or activated B cell-like (ABC), the latter of which historically carries a less favorable prognosis. However, it remains controversial as to whether these prognostic groupings remain valid in the era of rituximab therapy. MATERIALS AND METHODS: A systematic literature review identified 24 articles from which meta-analyses were conducted, comparing survival outcomes for patients assigned to either GCB or ABC/non-GCB subtype using GEP and/or Hans, Choi, or Muris IHC algorithms. RESULTS: Patients designated as GCB DLBCL using GEP fared significantly better in terms of overall survival than those with ABC DLBCL (hazard ratio, 1.85; P < .0001). In contrast, the Hans and Choi algorithms failed to identify significant differences in overall survival (P = .07 and P = .76, respectively) between GCB and non-GCB groups. CONCLUSIONS: Our study illustrates a lack of evidence supporting the use of the Hans and Choi algorithms for stratifying patients into distinct prognostic groups. Rather, GEP remains the preferred method for predicting the course of a patient's disease and informing decisions regarding treatment options.


Asunto(s)
Perfilación de la Expresión Génica , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/mortalidad , Estadificación de Neoplasias , Pronóstico , Modelos de Riesgos Proporcionales , Resultado del Tratamiento
4.
J Am Chem Soc ; 129(51): 15762-3, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18044902

RESUMEN

In comparison with the large number of nonribosomal peptide synthetases (NRPSs) that release their peptide products by hydrolytic cleavage of the peptide carrier protein (PCP) bound thioester, there are relatively few NRPSs that have been shown to use a nicotinamide cofactor to reduce this PCP-peptidyl thioester to an aldehyde or imine moiety. This work describes the first example of a reductase domain within a NRPS scaffold shown to reduce a PCP-peptidyl thioester to the corresponding primary alcohol, via an aldehyde intermediate, using two equivalents of reduced nicotinamide adenine dinucleotide phosphate (NADPH). By employing a ketone mimic of the aldehyde intermediate, as well as a specifically deuterated NADPH, it was further demonstrated that the pro-S hydride of the cofactor is transferred to the re face of the carbonyl group.


Asunto(s)
Alcoholes/química , Toxinas de Lyngbya/biosíntesis , Electrones , Ésteres/química , NADP/química , Oxidación-Reducción
5.
Org Lett ; 7(12): 2457-60, 2005 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-15932222

RESUMEN

[reaction: see text] A chemoenzymatic synthesis of ADP-D-glycero-beta-D-manno-heptose (ADP-D,D-Hep) is described in which D,D-Hep 7-phosphate is converted to ADP-D,D-Hep by two biosynthetic enzymes. This strategy allows access to the 6''-deuterated analogue, which upon incubation with the epimerase showed complete retention of the isotopic label at the 6''-position. This provides evidence for a direct oxidation mechanism in which the hydride initially transferred to the NADP+ cofactor is subsequently returned to the same carbon in a nonstereospecific manner.


Asunto(s)
Azúcares de Adenosina Difosfato/síntesis química , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Estructura Molecular , NADP/metabolismo , Oxidación-Reducción , Fosfatos/metabolismo , Estereoisomerismo , Especificidad por Sustrato
6.
Biochemistry ; 44(15): 5907-15, 2005 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15823050

RESUMEN

The first positive evidence for the utilization of a direct C-6' ' oxidation/reduction mechanism by ADP-l-glycero-d-manno-heptose 6-epimerase is reported here. The epimerase (HldD or AGME, formerly RfaD) operates in the biosynthetic pathway of l-glycero-d-manno-heptose, which is a conserved sugar in the core region of lipopolysaccharide (LPS) of Gram-negative bacteria. The stereochemical inversion catalyzed by the epimerase is interesting as it occurs at an "unactivated" stereocenter that lacks an acidic C-H bond, and therefore, a direct deprotonation/reprotonation mechanism cannot be employed. Instead, the epimerase employs a transient oxidation strategy involving a tightly bound NADP(+) cofactor. A recent study ruled out mechanisms involving transient oxidation at C-4' ' and C-7' ' and supported a mechanism that involves an initial oxidation directly at the C-6' ' position to generate a 6' '-keto intermediate (Read, J. A., Ahmed, R. A., Morrison, J. P., Coleman, W. G., Jr., Tanner, M. E. (2004) J. Am. Chem. Soc. 126, 8878-8879). A subsequent nonstereospecific reduction of the ketone intermediate can generate either epimer of the ADP-heptose. In this work, an intermediate analogue containing an aldehyde functionality at C-6' ', ADP-beta-d-manno-hexodialdose, is prepared in order to probe the ability of the enzyme to catalyze redox chemistry at this position. It is found that incubation of the aldehyde with a catalytic amount of the epimerase leads to a dismutation process in which one-half of the material is oxidized to ADP-beta-d-mannuronic acid and the other half is reduced to ADP-beta-d-mannose. Transient reduction of the enzyme-bound NADP(+) was monitored by UV spectroscopy and implicates the cofactor's involvement during catalysis.


Asunto(s)
Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Secuencia de Bases , Carbohidrato Epimerasas/genética , Clonación Molecular , ADN Bacteriano/genética , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Biológicos , NADP/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Estereoisomerismo , Especificidad por Sustrato
7.
J Am Chem Soc ; 126(29): 8878-9, 2004 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-15264802

RESUMEN

ADP-l-glycero-d-manno-heptose 6-epimerase (AGME, RfaD) is a bacterial enzyme that is involved in lipopolysaccharide biosynthesis and interconverts ADP-beta-l-glycero-d-manno-heptose (ADP-l,d-Hep) with ADP-beta-d-glycero-d-manno-heptose (ADP-d,d-Hep). AGME is known to require a tightly bound NADP+ cofactor for activity and presumably employs a mechanism involving transient oxidation of the substrate. Four mechanistic possibilities are considered that involve transient oxidation at either C-7' ', C-6' ', or C-4' ' of the heptose nucleotide. In this contribution, the use of solvent isotope incorporation studies and alternate substrates provides strong evidence for a mechanism involving nonstereospecific oxidation/reduction directly at C-6' '. It was found that the epimerization proceeds without any detectable incorporation of solvent-derived deuterium or 18O-isotope into the product. This argues against mechanisms involving either proton transfers at carbon or dehydration/rehydration events. In addition, the deoxygenated analogues, 7' '-deoxy-ADP-l,d-Hep and 4' '-deoxy-ADP-l,d-Hep, were both found to serve as substrates for the enzyme, indicating that oxidation at either C-7' ' or C-4' ' is not required for catalysis.


Asunto(s)
Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Heptosas/química , Heptosas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...