Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Horm Res Paediatr ; : 1-11, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39419009

RESUMEN

INTRODUCTION: Precocious puberty is defined as the appearance of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. Central precocious puberty (CPP) is a rare condition that is diagnosed when premature activation of the hypothalamic-pituitary-gonadal axis is detected, in association with precocious breast development or testicular growth. Idiopathic CPP is historically considered to be the most common form, but in recent years defects in a small but growing number of genes regulating the timing of puberty have been identified in an increasing proportion of cases of CPP. Delta-like non-canonical Notch ligand 1 (DLK1) is understood to be one of the key genes involved in the etiology of CPP, although its mechanistic role is not yet fully understood. CASE PRESENTATION: We identified a novel de novo variant of DLK1 (c.835C>T; p.Gln279*) in an 8-year-old girl of Bangladeshi origin. She presented with an advanced Tanner staging of B4P4A2, significantly advanced bone age (BA, 13 years), a near-adult proportioned uterus, with a history of menarche at the age of 7.4 years. Diagnosis was confirmed by raised basal luteinizing hormone concentration. She was found to have truncal obesity associated with abnormal fasting insulin levels and mildly elevated cholesterol levels. These findings are consistent with previous literature describing an association between patients with DLK1 deficiency and an impaired metabolic profile. The patient was treated for 2 years with GnRH agonists with ongoing biochemical follow-up into adolescence. CONCLUSION: This case illustrates the susceptibility to metabolic derangement for patients with mutations in DLK1 and the need for ongoing monitoring after puberty. Our summary of previously identified DLK1 variants and their metabolic consequences demonstrates the frequency of obesity, lipid abnormalities, and insulin dysregulation in this patient cohort in childhood and beyond. This knowledge can guide future clinical practice for patients with CPP patients due to DLK1 deficiency.

2.
Ann N Y Acad Sci ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39431640

RESUMEN

The neuroendocrine control of puberty and reproduction is fascinatingly complex, with up- and down-regulation of key reproductive hormones during fetal, infantile, and later childhood periods that determine the correct function of the hypothalamic-pituitary-gonadal axis and the timing of puberty. Neuronal development is a vital element of these processes, and multiple conditions of disordered puberty and reproduction have their etiology in abnormal neuronal migration or function. Although there are numerous documented cases across multiple conditions wherein patients have both neurodevelopmental disorders and pubertal abnormalities, this has mostly been described ad hoc and the associations are not clearly documented. In this review, we aim to describe the overlap between these two groups of conditions and to increase awareness to ensure that puberty and reproductive function are carefully monitored in patients with neurodevelopmental conditions, and vice versa. Moreover, this commonality can be explored for clues about the disease mechanisms in these patient groups and provide new avenues for therapeutic interventions for affected individuals.

3.
Lancet Diabetes Endocrinol ; 11(8): 545-554, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385287

RESUMEN

BACKGROUND: Identification of genetic causes of central precocious puberty have revealed epigenetic mechanisms as regulators of human pubertal timing. MECP2, an X-linked gene, encodes a chromatin-associated protein with a role in gene transcription. MECP2 loss-of-function mutations usually cause Rett syndrome, a severe neurodevelopmental disorder. Early pubertal development has been shown in several patients with Rett syndrome. The aim of this study was to explore whether MECP2 variants are associated with an idiopathic central precocious puberty phenotype. METHODS: In this translational cohort study, participants were recruited from seven tertiary centres from five countries (Brazil, Spain, France, the USA, and the UK). Patients with idiopathic central precocious puberty were investigated for rare potentially damaging variants in the MECP2 gene, to assess whether MECP2 might contribute to the cause of central precocious puberty. Inclusion criteria were the development of progressive pubertal signs (Tanner stage 2) before the age of 8 years in girls and 9 years in boys and basal or GnRH-stimulated LH pubertal concentrations. Exclusion criteria were the diagnosis of peripheral precocious puberty and the presence of any recognised cause of central precocious puberty (CNS lesions, known monogenic causes, genetic syndromes, or early exposure to sex steroids). All patients included were followed up at the outpatient clinics of participating academic centres. We used high-throughput sequencing in 133 patients and Sanger sequencing of MECP2 in an additional 271 patients. Hypothalamic expression of Mecp2 and colocalisation with GnRH neurons were determined in mice to show expression of Mecp2 in key nuclei related to pubertal timing regulation. FINDINGS: Between Jun 15, 2020, and Jun 15, 2022, 404 patients with idiopathic central precocious puberty (383 [95%] girls and 21 [5%] boys; 261 [65%] sporadic cases and 143 [35%] familial cases from 134 unrelated families) were enrolled and assessed. We identified three rare heterozygous likely damaging coding variants in MECP2 in five girls: a de novo missense variant (Arg97Cys) in two monozygotic twin sisters with central precocious puberty and microcephaly; a de novo missense variant (Ser176Arg) in one girl with sporadic central precocious puberty, obesity, and autism; and an insertion (Ala6_Ala8dup) in two unrelated girls with sporadic central precocious puberty. Additionally, we identified one rare heterozygous 3'UTR MECP2 insertion (36_37insT) in two unrelated girls with sporadic central precocious puberty. None of them manifested Rett syndrome. Mecp2 protein colocalised with GnRH expression in hypothalamic nuclei responsible for GnRH regulation in mice. INTERPRETATION: We identified rare MECP2 variants in girls with central precocious puberty, with or without mild neurodevelopmental abnormalities. MECP2 might have a role in the hypothalamic control of human pubertal timing, adding to the evidence of involvement of epigenetic and genetic mechanisms in this crucial biological process. FUNDING: Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, and the Wellcome Trust.


Asunto(s)
Pubertad Precoz , Síndrome de Rett , Animales , Niño , Femenino , Humanos , Masculino , Ratones , Brasil , Estudios de Cohortes , Hormona Folículo Estimulante , Hormona Liberadora de Gonadotropina , Hormona Luteinizante/metabolismo , Pubertad Precoz/genética , Pubertad Precoz/diagnóstico , Síndrome de Rett/genética , Síndrome de Rett/complicaciones
4.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499110

RESUMEN

Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes.


Asunto(s)
Mutación , Péptido Natriurético Tipo-C/metabolismo , Neoplasias Hipofisarias/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Acromegalia/metabolismo , Animales , Gatos , Línea Celular , Colforsina/farmacología , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Estrógenos/metabolismo , Femenino , Masculino , Fenotipo , Hipófisis/metabolismo , Ratas , Ratas Wistar , Hormona Liberadora de Tirotropina/farmacología
5.
Nanoscale ; 12(14): 7735-7748, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32211625

RESUMEN

Nanoengineered vehicles have the potential to deliver cargo drugs directly to disease sites, but can potentially be cleared by immune system cells or lymphatic drainage. In this study we explore the use of magnetism to hold responsive particles at a delivery site, by incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) into layer-by-layer (LbL) microcapsules. Microcapsules with SPIONs were rapidly phagocytosed by cells but did not trigger cellular ROS synthesis within 24 hours of delivery nor affect cell viability. In a non-directional cell migration assay, SPION containing microcapsules significantly inhibited movement of phagocytosing cells when placed in a magnetic field. Similarly, under flow conditions, a magnetic field retained SPION containing microcapsules at a physiologic wall shear stress of 0.751 dyne cm-2. Even when the SPION content was reduced to 20%, the majority of microcapsules were still retained. Dexamethasone microcrystals were synthesised by solvent evaporation and underwent LbL encapsulation with inclusion of a SPION layer. Despite a lower iron to volume content of these structures compared to microcapsules, they were also retained under shear stress conditions and displayed prolonged release of active drug, beyond 30 hours, measured using a glucocorticoid sensitive reporter cell line generated in this study. Our observations suggest use of SPIONs for magnetic retention of LbL structures is both feasible and biocompatible and has potential application for improved local drug delivery.


Asunto(s)
Cápsulas/química , Dexametasona/metabolismo , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Especies Reactivas de Oxígeno/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dexametasona/química , Dexametasona/farmacología , Liberación de Fármacos , Compuestos Férricos/química , Humanos , Campos Magnéticos , Microscopía Confocal
6.
Cells ; 8(9)2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540096

RESUMEN

C-type natriuretic peptide (CNP) is the most conserved member of the mammalian natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and reproduction. CNP is expressed throughout the body, but is particularly abundant in the central nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function. GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here, we examine the sensitivity of the natriuretic peptide system in LßT2 and αT3-1 gonadotrope cell lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express Nppc,Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively). Pulsatile, but not continuous, GnRH stimulation of LßT2 cells caused significant increases in Nppc and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells. CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LßT2 cells, but inhibited Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate reproductive function.


Asunto(s)
Gonadotrofos/metabolismo , Péptido Natriurético Tipo-C/metabolismo , Células Cultivadas , Gonadotrofos/efectos de los fármacos , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Péptido Natriurético Tipo-C/genética
7.
Reproduction ; 156(4): 313-330, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30306765

RESUMEN

Equine chorionic girdle trophoblast cells play important endocrine and immune functions critical in supporting pregnancy. Very little is known about the genes and pathways that regulate chorionic girdle trophoblast development. Our aim was to identify genes and signalling pathways active in vivo in equine chorionic girdle trophoblast within a critical 7-days window. We exploited the late implantation of the equine conceptus to obtain trophoblast tissue. An Agilent equine 44K microarray was performed using RNA extracted from chorionic girdle and chorion (control) from equine pregnancy days 27, 30, 31 and 34 (n = 5), corresponding to the initiation of chorionic girdle trophoblast proliferation, differentiation and migration. Data were analysed using R packages limma and maSigPro, Ingenuity Pathway Analysis and DAVID and verified using qRT-PCR, promoter analysis, western blotting and migration assays. Microarray analysis showed gene expression (absolute log FC >2, FDR-adjusted P < 0.05) was rapidly and specifically induced in the chorionic girdle between days 27 and 34 (compared to day 27, day 30 = 116, day 31 = 317, day 34 = 781 genes). Pathway analysis identified 35 pathways modulated during chorionic girdle development (e.g. FGF, integrin, Rho GTPases, MAPK) including pathways that have limited description in mammalian trophoblast (e.g. IL-9, CD40 and CD28 signalling). Rho A and ERK/MAPK activity was confirmed as was a role for transcription factor ELF5 in regulation of the CGB promoter. The purity and accessibility of chorionic girdle trophoblast proved to be a powerful resource to identify candidate genes and pathways involved in early equine placental development.


Asunto(s)
Caballos/embriología , Trofoblastos/metabolismo , Animales , Femenino , Expresión Génica , Caballos/metabolismo , Masculino , Placentación , Embarazo , Transducción de Señal , Transcriptoma
8.
Artículo en Inglés | MEDLINE | ID: mdl-29755409

RESUMEN

Equine chorionic gonadotrophin (eCG) is a placental glycoprotein critical for early equine pregnancy and used therapeutically in a number of species to support reproductive activity. The factors in trophoblast that transcriptionally regulate eCGß-subunit (LHB), the gene which confers the hormones specificity for the receptor, are not known. The aim of this study was to determine if glial cells missing 1 regulates LHB promoter activity. Here, studies of the LHB proximal promoter identified four binding sites for glial cells missing 1 (GCM1) and western blot analysis confirmed GCM1 was expressed in equine chorionic girdle (ChG) and surrounding tissues. Luciferase assays demonstrated endogenous activity of the LHB promoter in BeWo choriocarcinoma cells with greatest activity by a proximal 335 bp promoter fragment. Transactivation studies in COS7 cells using an equine GCM1 expression vector showed GCM1 could transactivate the proximal 335 bp LHB promoter. Chromatin immunoprecipitation using primary ChG trophoblast cells showed GCM1 to preferentially bind to the most proximal GCM1-binding site over site 2. Mutation of site 1 but not site 2 resulted in a loss of endogenous promoter activity in BeWo cells and failure of GCM1 to transactivate the promoter in COS-7 cells. Together, these data show that GCM1 binds to site 1 in the LHB promoter but also requires the upstream segment of the LHB promoter between -119 bp and -335 bp of the translation start codon for activity. GCM1 binding partners, ETV1, ETV7, HOXA13, and PITX1, were found to be differentially expressed in the ChG between days 27 and 34 and are excellent candidates for this role. In conclusion, GCM1 was demonstrated to drive the LHB promoter, through direct binding to a predicted GCM1-binding site, with requirement for another factor(s) to bind the proximal promoter to exert this function. Based on these findings, we hypothesize that ETV7 and HOXA13 act in concert with GCM1 to initiate LHB transcription between days 30 and 31, with ETV1 partnering with GCM1 to maintain transcription.

9.
Methods Mol Biol ; 1651: 23-32, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28801897

RESUMEN

Chromatin immunoprecipitation (ChIP) has become a widely used methodology for assessment of protein/DNA interactions. The technique allows the analysis of direct binding of transcription factors to gene promoters, identification of histone modifications, and localization of DNA modifying enzymes. Antibodies conjugated to agarose beads can be utilized to immunoprecipitate specific proteins, cross-linked to sheared chromatin regions to which they are bound endogenously. With downstream applications including quantitative real-time polymerase chain reaction (qRT-PCR), genome-wide sequencing (ChIP-seq), microarray analysis (ChIP-chip), and mass spectrometry (ChIP-MS), the technique enables comprehensive assessment of protein/DNA interactions. Here I describe ChIP, followed by qRT-PCR, to assess direct binding of a single protein to multiple predicted binding sites within a gene promoter.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , ADN/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Cromatina/química , Cromatina/genética , ADN/química , ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Unión Proteica
10.
Reproduction ; 152(3): 171-84, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27280409

RESUMEN

Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.


Asunto(s)
Evolución Biológica , Antígeno Carcinoembrionario/metabolismo , Glicoproteínas/metabolismo , Placenta/metabolismo , Proteínas Gestacionales/metabolismo , Trofoblastos/metabolismo , Animales , Femenino , Glicoproteínas/clasificación , Caballos , Humanos , Filogenia , Embarazo
11.
Arthritis Rheumatol ; 67(5): 1182-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25604080

RESUMEN

OBJECTIVE: We have previously shown, in a cohort of untreated rheumatoid arthritis (RA) patients, that the suppressive function of Treg cells is defective. However, other studies in cohorts of patients with established RA have shown that Treg cell function is normal. We hypothesized that treatment may restore Treg cell function and lead to reduced disease activity. The aim of this study was to investigate whether treatment with methotrexate (MTX) can result in epigenetic changes that lead to restoration of the Treg cell suppressive function in RA. METHODS: Peripheral blood samples from RA patients were assessed using (3) H-thymidine incorporation to measure Treg cell suppression of T cell proliferation, and by enzyme-linked immunosorbent assay to determine Treg cell suppression of interferon-γ production. CTLA-4 and FoxP3 expression was measured by flow cytometry and quantitative polymerase chain reaction (qPCR) in Treg cells from healthy individuals and RA patients. CD4+ T cells isolated from healthy individuals were cultured with interleukin-2 (IL-2), IL-6, and tumor necrosis factor α in the presence or absence of MTX, and FoxP3 expression was determined using qPCR and flow cytometry. Methylation of the FOXP3 upstream enhancer was analyzed by bisulfite sequencing PCR. RESULTS: Defective Treg cell function was observed only in RA patients who had not been treated with MTX, whereas Treg cells from MTX-exposed RA patients had restored suppressive function. This restored suppression was associated with increased expression of FoxP3 and CTLA-4 in Treg cells. Bisulfite sequencing PCR of Treg cells cultured in MTX revealed a significant reduction in methylation of the FOXP3 upstream enhancer. CONCLUSION: This study identifies a novel mechanism of action of MTX, in which treatment of RA patients with MTX restores defective Treg cell function through demethylation of the FOXP3 locus, leading to a subsequent increase in FoxP3 and CTLA-4 expression.


Asunto(s)
Antirreumáticos/farmacología , Artritis Reumatoide/inmunología , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Elementos de Facilitación Genéticos/efectos de los fármacos , Factores de Transcripción Forkhead/efectos de los fármacos , Metotrexato/farmacología , ARN Mensajero/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Adulto , Anciano , Artritis Reumatoide/tratamiento farmacológico , Antígeno CTLA-4/efectos de los fármacos , Antígeno CTLA-4/metabolismo , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Factores de Transcripción Forkhead/genética , Humanos , Interferón gamma/efectos de los fármacos , Interferón gamma/metabolismo , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfocitos T Reguladores/metabolismo
12.
Eur J Immunol ; 44(10): 2968-78, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25042153

RESUMEN

Treg-cell function is compromised in rheumatoid arthritis (RA). As the master regulator of Treg cells, FOXP3 controls development and suppressive function. Stable Treg-cell FOXP3 expression is epigenetically regulated; constitutive expression requires a demethylated Treg-specific demethylated region. Here, we hypothesised that methylation of the FOXP3 locus is altered in Treg cells of established RA patients. Methylation analysis of key regulatory regions in the FOXP3 locus was performed on Treg cells from RA patients and healthy controls. The FOXP3 Treg-specific demethylated region and proximal promoter displayed comparable methylation profiles in RA and healthy-donor Treg cells. We identified a novel differentially methylated region (DMR) upstream of the FOXP3 promoter, with enhancer activity sensitive to methylation-induced silencing. In RA Treg cells we observed significantly reduced DMR methylation and lower DNA methyltransferase (DNMT1/3A) expression compared with healthy Treg cells. Furthermore, DMR methylation negatively correlated with FOXP3 mRNA expression, and Treg cells isolated from rheumatoid factor negative RA patients were found to express significantly higher levels of FOXP3 than Treg cells from RhF-positive patients, with an associated decrease in DMR methylation. In conclusion, the novel DMR is involved in the regulation of Treg-cell FOXP3 expression, but this regulation is lost post-transcriptionally in RA Treg cells.


Asunto(s)
Artritis Reumatoide/inmunología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica/inmunología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Artritis Reumatoide/genética , Metilación de ADN/genética , Metilación de ADN/inmunología , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Arthritis Rheumatol ; 66(9): 2344-54, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24891289

RESUMEN

OBJECTIVE: Functionally impaired Treg cells expressing abnormally low levels of CTLA-4 have been well documented in rheumatoid arthritis (RA). However, the molecular defect underlying this reduced expression is unknown. The aims of this study were to assess the role of DNA methylation in regulating CTLA-4 expression in Treg cells isolated from RA patients and to elucidate the mechanism of their reduced suppressor function. METHODS: CTLA-4 expression in Treg cells from RA patients and healthy controls was measured by quantitative polymerase chain reaction (PCR) and flow cytometry. Methylation of the CTLA-4 gene promoter was analyzed by bisulfite-specific PCR, followed by sequencing. Methylation-dependent transcriptional activity of the CTLA-4 gene promoter was measured by luciferase assay, and NF-AT binding to the CTLA-4 gene promoter was determined by chromatin immunoprecipitation. The role of CTLA-4 expression in controlling Teff cells was analyzed using an autologous mixed lymphocyte reaction. RESULTS: Down-regulation of CTLA-4 expression in Treg cells from RA patients was caused by methylation of a previously unidentified NF-AT binding site within the CTLA-4 gene promoter. As a consequence, Treg cells were unable to induce expression and activation of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO), which in turn resulted in a failure to activate the immunomodulatory kynurenine pathway. CONCLUSION: We show for the first time that epigenetic modifications contribute to defective Treg cell function in RA through an inability to activate the IDO pathway. Therefore, this study sets a precedent for investigating potential therapeutic strategies aimed at reinforcing the IDO pathway in RA patients.


Asunto(s)
Artritis Reumatoide/inmunología , Antígeno CTLA-4/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal/fisiología , Linfocitos T Reguladores/metabolismo , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Antígeno CTLA-4/genética , Metilación de ADN , Regulación hacia Abajo , Humanos , Linfocitos T Reguladores/inmunología
14.
Endocrinology ; 155(8): 3054-64, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24848867

RESUMEN

TGFß superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFß signaling in the mammalian placenta.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular , Gonadotropina Coriónica/metabolismo , Proteínas Smad Reguladas por Receptores/metabolismo , Trofoblastos/citología , Animales , Femenino , Caballos , Embarazo , Cultivo Primario de Células , Transducción de Señal/fisiología , Proteína Smad1/fisiología , Proteína Smad5/fisiología , Proteína Smad8/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Trofoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...