Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 13(23): e4892, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38094251

RESUMEN

Human mitochondrial DNA (mtDNA) encodes several components of oxidative phosphorylation responsible for the bulk of cellular energy production. The mtDNA is transcribed by a dedicated human mitochondrial RNA polymerase (POLRMT) that is structurally distinct from its nuclear counterparts, instead closely resembling the single-subunit viral RNA polymerases (e.g., T7 RNA polymerase). The initiation of transcription by POLRMT is aided by two initiation factors: transcription factor A, mitochondrial (TFAM), and transcription factor B2, mitochondrial (TFB2M). Although many details of human mitochondrial transcription initiation have been elucidated with in vitro biochemical and structural studies, much remains to be addressed relating to the mechanism and regulation of transcription. Studies of such mechanisms require reliable, high-yield, and high-purity methods for protein production, and this protocol provides the level of detail and troubleshooting tips that are necessary for a novice to generate meaningful amounts of proteins for experimental work. The current protocol describes how to purify recombinant POLRMT, TFAM, and TFB2M from Escherichia coli using techniques such as affinity column chromatography (Ni2+ and heparin), how to remove the solubility tags with TEV protease and recover untagged proteins of interest, and how to overcome commonly encountered challenges in obtaining high yield of each protein. Key features • This protocol builds upon purification methods developed by Patel lab (Ramachandran et al., 2017) and others with greater detail than previously published works. • The protocol requires several days to complete as various steps are designed to be performed overnight. • The recombinantly purified proteins have been successfully used for in vitro transcription experiments, allowing for finer control of experimental components in a minimalistic system.

2.
ACS Synth Biol ; 11(10): 3216-3227, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130255

RESUMEN

Engineered microbes can be used for producing value-added chemicals from renewable feedstocks, relieving the dependency on nonrenewable resources such as petroleum. These microbes often are composed of synthetic metabolic pathways; however, one major problem in establishing a synthetic pathway is the challenge of precisely controlling competing metabolic routes, some of which could be crucial for fitness and survival. While traditional gene deletion and/or coarse overexpression approaches do not provide precise regulation, cis-repressors (CRs) are RNA-based regulatory elements that can control the production levels of a particular protein in a tunable manner. Here, we describe a protocol for a generally applicable fluorescence-activated cell sorting technique used to isolate eight subpopulations of CRs from a semidegenerate library in Escherichia coli, followed by deep sequencing that permitted the identification of 15 individual CRs with a broad range of protein production profiles. Using these new CRs, we demonstrated a change in production levels of a fluorescent reporter by over two orders of magnitude and further showed that these CRs are easily ported from E. coli to Pseudomonas putida. We next used four CRs to tune the production of the enzyme PpsA, involved in pyruvate to phosphoenolpyruvate (PEP) conversion, to alter the pool of PEP that feeds into the shikimate pathway. In an engineered P. putida strain, where carbon flux in the shikimate pathway is diverted to the synthesis of the commodity chemical cis,cis-muconate, we found that tuning PpsA translation levels increased the overall titer of muconate. Therefore, CRs provide an approach to precisely tune protein levels in metabolic pathways and will be an important tool for other metabolic engineering efforts.


Asunto(s)
Petróleo , Pseudomonas putida , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfoenolpiruvato/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ingeniería Metabólica , Ácido Pirúvico/metabolismo , Genómica , ARN/metabolismo , Petróleo/metabolismo
3.
J Biol Chem ; 298(4): 101815, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278431

RESUMEN

Mitochondrial transcription factor A (TFAM) plays important roles in mitochondrial DNA compaction, transcription initiation, and in the regulation of processes like transcription and replication processivity. It is possible that TFAM is locally regulated within the mitochondrial matrix via such mechanisms as phosphorylation by protein kinase A and nonenzymatic acetylation by acetyl-CoA. Here, we demonstrate that DNA-bound TFAM is less susceptible to these modifications. We confirmed using EMSAs that phosphorylated or acetylated TFAM compacted circular double-stranded DNA just as well as unmodified TFAM and provide an in-depth analysis of acetylated sites on TFAM. We show that both modifications of TFAM increase the processivity of mitochondrial RNA polymerase during transcription through TFAM-imposed barriers on DNA, but that TFAM bearing either modification retains its full activity in transcription initiation. We conclude that TFAM phosphorylation by protein kinase A and nonenzymatic acetylation by acetyl-CoA are unlikely to occur at the mitochondrial DNA and that modified free TFAM retains its vital functionalities like compaction and transcription initiation while enhancing transcription processivity.


Asunto(s)
ADN Mitocondrial , Proteínas de Unión al ADN , Proteínas Mitocondriales , Factores de Transcripción , Acetilcoenzima A/metabolismo , Acetilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...