Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(2): 186-202, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-39196188

RESUMEN

Tissue repair after myocardial infarction (MI) is guided by autocrine and paracrine-acting proteins. Deciphering these signals and their upstream triggers is essential when considering infarct healing as a therapeutic target. Here we perform a bioinformatic secretome analysis in mouse cardiac endothelial cells and identify cysteine-rich with EGF-like domains 2 (CRELD2), an endoplasmic reticulum stress-inducible protein with poorly characterized function. CRELD2 was abundantly expressed and secreted in the heart after MI in mice and patients. Creld2-deficient mice and wild-type mice treated with a CRELD2-neutralizing antibody showed impaired de novo microvessel formation in the infarct border zone and developed severe postinfarction heart failure. CRELD2 protein therapy, conversely, improved heart function after MI. Exposing human coronary artery endothelial cells to recombinant CRELD2 induced angiogenesis, associated with a distinct phosphoproteome signature. These findings identify CRELD2 as an angiogenic growth factor and unravel a link between endoplasmic reticulum stress and ischemic tissue repair.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Endoteliales , Infarto del Miocardio , Neovascularización Fisiológica , Animales , Humanos , Masculino , Ratones , Inductores de la Angiogénesis/farmacología , Inductores de la Angiogénesis/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
J Am Heart Assoc ; 13(3): e033553, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293923

RESUMEN

BACKGROUND: Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)-induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device-mediated mechanical unloading and circulatory support. METHODS AND RESULTS: We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia-inducible factor)-1α-mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia-mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device-mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. CONCLUSIONS: Hypoxia attenuates LVPO-induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia-mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO-induced heart failure and mediate cardiac recovery following mechanical circulatory support.


Asunto(s)
Estenosis de la Válvula Aórtica , Insuficiencia Cardíaca , Humanos , Ratones , Animales , Insuficiencia Cardíaca/etiología , Cardiomegalia/metabolismo , Miocardio/metabolismo , Hipoxia/complicaciones , Remodelación Ventricular , Modelos Animales de Enfermedad
3.
Science ; 376(6599): 1343-1347, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35709278

RESUMEN

Effective tissue repair after myocardial infarction entails a vigorous angiogenic response, guided by incompletely defined immune cell-endothelial cell interactions. We identify the monocyte- and macrophage-derived cytokine METRNL (meteorin-like) as a driver of postinfarction angiogenesis and high-affinity ligand for the stem cell factor receptor KIT (KIT receptor tyrosine kinase). METRNL mediated angiogenic effects in cultured human endothelial cells through KIT-dependent signaling pathways. In a mouse model of myocardial infarction, METRNL promoted infarct repair by selectively expanding the KIT-expressing endothelial cell population in the infarct border zone. Metrnl-deficient mice failed to mount this KIT-dependent angiogenic response and developed severe postinfarction heart failure. Our data establish METRNL as a KIT receptor ligand in the context of ischemic tissue repair.


Asunto(s)
Adipoquinas , Citocinas , Infarto del Miocardio , Neovascularización Fisiológica , Factores de Crecimiento Nervioso , Proteínas Proto-Oncogénicas c-kit , Animales , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células Endoteliales/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Ligandos , Macrófagos/metabolismo , Ratones , Ratones Mutantes , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo
4.
Circulation ; 144(15): 1227-1240, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34372689

RESUMEN

BACKGROUND: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete MYDGF (myeloid-derived growth factor) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. METHODS: We defined the cellular sources and function of MYDGF in wild-type (WT), Mydgf-deficient (Mydgf-/-), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. RESULTS: MYDGF protein abundance increased in the left ventricular myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf-/- mice had no apparent phenotype at baseline, they developed more severe left ventricular hypertrophy and contractile dysfunction during pressure overload than WT mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein-coupled receptor agonist-induced hypertrophy and augmented SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression in cultured neonatal rat ventricular cardiomyocytes by enhancing PIM1 (Pim-1 proto-oncogene, serine/threonine kinase) expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf-/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca2+ cycling and sarcomere function compared with cardiomyocytes from pressure-overloaded WT mice. Transplanting Mydgf-/- mice with WT bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf-/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded WT mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated left ventricular hypertrophy and dysfunction, and improved survival. CONCLUSIONS: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/fisiología , Insuficiencia Cardíaca/terapia , Interleucinas/uso terapéutico , Miocitos Cardíacos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Interleucinas/farmacología , Ratones
5.
Cardiovasc Res ; 117(5): 1257-1273, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33063086

RESUMEN

Acute myocardial infarction (MI) inflicts massive injury to the coronary microcirculation leading to vascular disintegration and capillary rarefication in the infarct region. Tissue repair after MI involves a robust angiogenic response that commences in the infarct border zone and extends into the necrotic infarct core. Technological advances in several areas have provided novel mechanistic understanding of postinfarction angiogenesis and how it may be targeted to improve heart function after MI. Cell lineage tracing studies indicate that new capillary structures arise by sprouting angiogenesis from pre-existing endothelial cells (ECs) in the infarct border zone with no meaningful contribution from non-EC sources. Single-cell RNA sequencing shows that ECs in infarcted hearts may be grouped into clusters with distinct gene expression signatures, likely reflecting functionally distinct cell populations. EC-specific multicolour lineage tracing reveals that EC subsets clonally expand after MI. Expanding EC clones may arise from tissue-resident ECs with stem cell characteristics that have been identified in multiple organs including the heart. Tissue repair after MI involves interactions among multiple cell types which occur, to a large extent, through secreted proteins and their cognate receptors. While we are only beginning to understand the full complexity of this intercellular communication, macrophage and fibroblast populations have emerged as major drivers of the angiogenic response after MI. Animal data support the view that the endogenous angiogenic response after MI can be boosted to reduce scarring and adverse left ventricular remodelling. The improved mechanistic understanding of infarct angiogenesis therefore creates multiple therapeutic opportunities. During preclinical development, all proangiogenic strategies should be tested in animal models that replicate both cardiovascular risk factor(s) and the pharmacotherapy typically prescribed to patients with acute MI. Considering that the majority of patients nowadays do well after MI, clinical translation will require careful selection of patients in need of proangiogenic therapies.


Asunto(s)
Células Progenitoras Endoteliales/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Neovascularización Fisiológica , Regeneración , Inductores de la Angiogénesis/uso terapéutico , Proteínas Angiogénicas/metabolismo , Animales , Comunicación Autocrina , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Comunicación Paracrina , Fenotipo , Recuperación de la Función , Transducción de Señal
6.
Nat Commun ; 10(1): 5379, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772377

RESUMEN

Myeloid-derived growth factor (MYDGF) is a paracrine-acting protein that is produced by bone marrow-derived monocytes and macrophages to protect and repair the heart after myocardial infarction (MI). This effect can be used for the development of protein-based therapies for ischemic tissue repair, also beyond the sole application in heart tissue. Here, we report the X-ray structure of MYDGF and identify its functionally relevant receptor binding epitope. MYDGF consists of a 10-stranded ß-sandwich with a folding topology showing no similarities to other cytokines or growth factors. By characterizing the epitope of a neutralizing antibody and utilizing functional assays to study the activity of surface patch-mutations, we were able to localize the receptor interaction interface to a region around two surface tyrosine residues 71 and 73 and an adjacent prominent loop structure of residues 97-101. These findings enable structure-guided protein engineering to develop modified MYDGF variants with potentially improved properties for clinical use.


Asunto(s)
Interleucinas/química , Interleucinas/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Vasos Coronarios/citología , Cristalografía por Rayos X , Epítopos , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Modelos Moleculares , Mutación , Infarto del Miocardio/metabolismo , Conformación Proteica , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Tirosina/genética
7.
Circ Res ; 125(9): 787-801, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31434553

RESUMEN

RATIONALE: Mechanistic insight into the inflammatory response after acute myocardial infarction may inform new molecularly targeted treatment strategies to prevent chronic heart failure. OBJECTIVE: We identified the sulfatase SULF2 in an in silico secretome analysis in bone marrow cells from patients with acute myocardial infarction and detected increased sulfatase activity in myocardial autopsy samples. SULF2 (Sulf2 in mice) and its isoform SULF1 (Sulf1) act as endosulfatases removing 6-O-sulfate groups from heparan sulfate (HS) in the extracellular space, thus eliminating docking sites for HS-binding proteins. We hypothesized that the Sulfs have a role in tissue repair after myocardial infarction. METHODS AND RESULTS: Both Sulfs were dynamically upregulated after coronary artery ligation in mice, attaining peak expression and activity levels during the first week after injury. Sulf2 was expressed by monocytes and macrophages, Sulf1 by endothelial cells and fibroblasts. Infarct border zone capillarization was impaired, scar size increased, and cardiac dysfunction more pronounced in mice with a genetic deletion of either Sulf1 or Sulf2. Studies in bone marrow-chimeric Sulf-deficient mice and Sulf-deficient cardiac endothelial cells established that inflammatory cell-derived Sulf2 and endothelial cell-autonomous Sulf1 promote angiogenesis. Mechanistically, both Sulfs reduced HS sulfation in the infarcted myocardium, thereby diminishing Vegfa (vascular endothelial growth factor A) interaction with HS. Along this line, both Sulfs rendered infarcted mouse heart explants responsive to the angiogenic effects of HS-binding Vegfa164 but did not modulate the angiogenic effects of non-HS-binding Vegfa120. Treating wild-type mice systemically with the small molecule HS-antagonist surfen (bis-2-methyl-4-amino-quinolyl-6-carbamide, 1 mg/kg/day) for 7 days after myocardial infarction released Vegfa from HS, enhanced infarct border-zone capillarization, and exerted sustained beneficial effects on cardiac function and survival. CONCLUSIONS: These findings establish HS-editing Sulfs as critical inducers of postinfarction angiogenesis and identify HS sulfation as a therapeutic target for ischemic tissue repair.


Asunto(s)
Espacio Extracelular/metabolismo , Isquemia Miocárdica/metabolismo , Sulfatasas/biosíntesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Disponibilidad Biológica , Espacio Extracelular/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Isquemia Miocárdica/patología , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
8.
Anal Chem ; 91(2): 1302-1308, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30543396

RESUMEN

Myeloid-derived growth factor (MYDGF in humans, Mydgf in mice) is a secreted protein with previously unknown biological functions. In a recent study, Mydgf was shown to mediate cardiac repair after acute myocardial infarction (MI) in mice. Lack of a sensitive assay to measure MYDGF in the circulation has hampered its further investigation. Here, we developed a liquid chromatography/multiple reaction monitoring-mass spectrometry MYDGF assay, employing SDS-PAGE-based protein fractionation to deplete high-abundant proteins and a stable isotope-labeled synthetic standard peptide for quantification. The assay had a lower limit of quantification of 0.8 ng/mL and a linear range up to 190 ng/mL. Within-run and total imprecision ranged from 8 to 17% and 11 to 20%, respectively. MYDGF plasma concentrations were not affected by either storage at room temperature for 4 h or up to three freeze-thaw cycles. Apparently healthy adults presented with a median (range) MYDGF concentration of 3.3 (1.3-6.7) ng/mL ( n = 120). MYDGF concentrations were elevated 2.7-fold ( P < 0.001) in patients with acute MI ( n = 101) and were associated with inflammatory biomarkers, renal dysfunction, and long-term cardiovascular mortality. The new assay and the favorable preanalytic characteristics of the analyte will facilitate studies into the pathophysiology of MYDGF and its potential use as a biomarker or protein therapeutic in patients with acute MI or other disease states.


Asunto(s)
Cromatografía Liquida/métodos , Interleucinas/sangre , Espectrometría de Masas/métodos , Infarto del Miocardio/sangre , Enfermedad Aguda , Adulto , Anciano , Anciano de 80 o más Años , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Interleucinas/química , Masculino , Persona de Mediana Edad , Proteolisis , Tripsina/química , Adulto Joven
9.
Circulation ; 136(19): 1809-1823, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28931551

RESUMEN

BACKGROUND: Clinical trials of bone marrow cell-based therapies after acute myocardial infarction (MI) have produced mostly neutral results. Treatment with specific bone marrow cell-derived secreted proteins may provide an alternative biological approach to improving tissue repair and heart function after MI. We recently performed a bioinformatic secretome analysis in bone marrow cells from patients with acute MI and discovered a poorly characterized secreted protein, EMC10 (endoplasmic reticulum membrane protein complex subunit 10), showing activity in an angiogenic screen. METHODS: We investigated the angiogenic potential of EMC10 and its mouse homolog (Emc10) in cultured endothelial cells and infarcted heart explants. We defined the cellular sources and function of Emc10 after MI using wild-type, Emc10-deficient, and Emc10 bone marrow-chimeric mice subjected to transient coronary artery ligation. Furthermore, we explored the therapeutic potential of recombinant Emc10 delivered by osmotic minipumps after MI in heart failure-prone FVB/N mice. RESULTS: Emc10 signaled through small GTPases, p21-activated kinase, and the p38 mitogen-activated protein kinase (MAPK)-MAPK-activated protein kinase 2 (MK2) pathway to promote actin polymerization and endothelial cell migration. Confirming the importance of these signaling events in the context of acute MI, Emc10 stimulated endothelial cell outgrowth from infarcted mouse heart explants via p38 MAPK-MK2. Emc10 protein abundance was increased in the infarcted region of the left ventricle and in the circulation of wild-type mice after MI. Emc10 expression was also increased in left ventricular tissue samples from patients with acute MI. Bone marrow-derived monocytes and macrophages were the predominant sources of Emc10 in the infarcted murine heart. Emc10 KO mice showed no cardiovascular phenotype at baseline. After MI, however, capillarization of the infarct border zone was impaired in KO mice, and the animals developed larger infarct scars and more pronounced left ventricular remodeling compared with wild-type mice. Transplanting KO mice with wild-type bone marrow cells rescued the angiogenic defect and ameliorated left ventricular remodeling. Treating FVB/N mice with recombinant Emc10 enhanced infarct border-zone capillarization and exerted a sustained beneficial effect on left ventricular remodeling. CONCLUSIONS: We have identified Emc10 as a previously unknown angiogenic growth factor that is produced by bone marrow-derived monocytes and macrophages as part of an endogenous adaptive response that can be enhanced therapeutically to repair the heart after MI.


Asunto(s)
Proteínas Angiogénicas/metabolismo , Células de la Médula Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Neovascularización Fisiológica , Cicatrización de Heridas , Proteínas Angiogénicas/administración & dosificación , Proteínas Angiogénicas/deficiencia , Proteínas Angiogénicas/genética , Animales , Trasplante de Médula Ósea , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Genotipo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/administración & dosificación , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Neovascularización Fisiológica/efectos de los fármacos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Eur Heart J ; 38(5): 362-372, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545647

RESUMEN

Aims: Iron deficiency (ID) is associated with adverse outcomes in heart failure (HF) but the underlying mechanisms are incompletely understood. Intracellular iron availability is secured by two mRNA-binding iron-regulatory proteins (IRPs), IRP1 and IRP2. We generated mice with a cardiomyocyte-targeted deletion of Irp1 and Irp2 to explore the functional implications of ID in the heart independent of systemic ID and anaemia. Methods and results: Iron content in cardiomyocytes was reduced in Irp-targeted mice. The animals were not anaemic and did not show a phenotype under baseline conditions. Irp-targeted mice, however, were unable to increase left ventricular (LV) systolic function in response to an acute dobutamine challenge. After myocardial infarction, Irp-targeted mice developed more severe LV dysfunction with increased HF mortality. Mechanistically, the activity of the iron-sulphur cluster-containing complex I of the mitochondrial electron transport chain was reduced in left ventricles from Irp-targeted mice. As demonstrated by extracellular flux analysis in vitro, mitochondrial respiration was preserved at baseline but failed to increase in response to dobutamine in Irp-targeted cardiomyocytes. As shown by 31P-magnetic resonance spectroscopy in vivo, LV phosphocreatine/ATP ratio declined during dobutamine stress in Irp-targeted mice but remained stable in control mice. Intravenous injection of ferric carboxymaltose replenished cardiac iron stores, restored mitochondrial respiratory capacity and inotropic reserve, and attenuated adverse remodelling after myocardial infarction in Irp-targeted mice but not in control mice. As shown by electrophoretic mobility shift assays, IRP activity was significantly reduced in LV tissue samples from patients with advanced HF and reduced LV tissue iron content. Conclusions: ID in cardiomyocytes impairs mitochondrial respiration and adaptation to acute and chronic increases in workload. Iron supplementation restores cardiac energy reserve and function in iron-deficient hearts.


Asunto(s)
Insuficiencia Cardíaca/prevención & control , Deficiencias de Hierro , Proteínas Reguladoras del Hierro/fisiología , Miocitos Cardíacos/metabolismo , Animales , Cardiotónicos/farmacología , Dopamina/farmacología , Compuestos Férricos/farmacología , Ferritinas/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Hierro/metabolismo , Proteínas Reguladoras del Hierro/deficiencia , Angiografía por Resonancia Magnética , Maltosa/análogos & derivados , Maltosa/farmacología , Mitocondrias Cardíacas/fisiología , Fenotipo , ARN Mensajero/fisiología , Función Ventricular Izquierda/fisiología
12.
Nat Med ; 21(2): 140-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25581518

RESUMEN

Paracrine-acting proteins are emerging as a central mechanism by which bone marrow cell-based therapies improve tissue repair and heart function after myocardial infarction (MI). We carried out a bioinformatic secretome analysis in bone marrow cells from patients with acute MI to identify novel secreted proteins with therapeutic potential. Functional screens revealed a secreted protein encoded by an open reading frame on chromosome 19 (C19orf10) that promotes cardiac myocyte survival and angiogenesis. We show that bone marrow-derived monocytes and macrophages produce this protein endogenously to protect and repair the heart after MI, and we named it myeloid-derived growth factor (MYDGF). Whereas Mydgf-deficient mice develop larger infarct scars and more severe contractile dysfunction compared to wild-type mice, treatment with recombinant Mydgf reduces scar size and contractile dysfunction after MI. This study is the first to assign a biological function to MYDGF, and it may serve as a prototypical example for the development of protein-based therapies for ischemic tissue repair.


Asunto(s)
Interleucinas/genética , Interleucinas/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Endoteliales/efectos de los fármacos , Células HEK293 , Humanos , Interleucinas/farmacología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Monocitos/metabolismo , Miocitos Cardíacos , Neovascularización Fisiológica , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/genética
13.
Methods Mol Biol ; 1182: 3-18, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25055896

RESUMEN

In the last years, an enormous progress has been made in the identification of genomic sequences. Given that genomic sequences can have various functions (e.g., structural organization, gene regulation, transcriptional start, and protein coding), molecular characterization is essential for progressing from the initial identification of genomic sequences to the delineation of a specific biological mechanism. Mapping of transcribed sequences is the initial step in functional characterization of genomic sequences. Northern blot analysis allows for a direct and detailed characterization of transcribed sequences, like size and splicing variants, and provides a relative comparison of transcript abundance between different cellular conditions. This method includes separation of total cellular RNA by size via gel electrophoresis, RNA transfer to a membrane, and RNA hybridization with a complementary labeled genomic probe.


Asunto(s)
Genoma/genética , Genómica/métodos , Northern Blotting , Mapeo Cromosómico , Transcripción Genética
14.
Methods Mol Biol ; 1182: 173-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25055909

RESUMEN

Ribosomes are large protein-RNA complexes involved in translation of mRNA nucleotide sequences into proteins. Multiple ribosomes, polyribosomes (polysomes), bind to a single mRNA in order to initiate translation and protein synthesis. In order to distinguish actively translated RNAs, total polysomes can be isolated from cell lysates and purified by centrifugation through sucrose density gradients. The polysome fraction represents all actively translated cellular RNAs that can be specifically detected using common RNA detection assays, e.g., RT-PCR. The quantity of the target RNA in polysomes fraction indicates its translation state. This chapter provides a protocol for the isolation and fractionation of polysomes from mammalian cell lines.


Asunto(s)
Técnicas Genéticas , ARN Mensajero/genética , Animales , Línea Celular , Humanos , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo
15.
Methods Mol Biol ; 1182: 179-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25055910

RESUMEN

The dicistronic luciferase reporter gene system is the most common method to isolate and characterize internal ribosome entry sites (IRES). It is based on the expression of a dicistronic RNA comprising two independent reporter genes in 3' and 5'cistrons, and the putative IRES inserted into intercistronic region. The most convenient aspect of using Renilla and firefly luciferase genes is that both gene products can be detected in a single assay using Dual-Luciferase(®) Reporter Assay System from Promega. The Renilla luciferase coding sequence is often inserted into the 5'cistron and serves as internal control. It is translated cap dependently, as it is close to the cap structure at the 5' end. The 3'cistron located far downstream to the cap structure can only be translated by a cap-independent mechanism when the intercistronic sequence is capable of ribosome binding and re-initiation of translation. Expression level of the 3'cistron is usually normalized to the expression of 5'cistron to estimate the relative IRES activity of intercistronic sequences.


Asunto(s)
Ribosomas/metabolismo , Animales , ADN Intergénico/genética , Humanos , Luciferasas/genética , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología
16.
Methods Mol Biol ; 1182: 187-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25055911

RESUMEN

The RNA electrophoretic mobility shift assay is a very versatile method to study a broad spectrum of RNA-protein interactions. The technique is based on the separation of protein RNA mixtures through a native acrylamide gel. Compared to unbound RNA, RNA-protein complexes migrate slower through the gel resulting in a mass shift. The RNA EMSA can be used to identify unknown RNA-protein complexes, to map the RNA binding site of single proteins or determine the specificity of RNA-protein complexes using specific antibodies resulting in retarded migration through the gel.


Asunto(s)
Ensayo de Cambio de Movilidad Electroforética , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Mapeo Cromosómico , Unión Proteica
17.
Methods Mol Biol ; 1182: 195-201, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25055912

RESUMEN

The majority of regulatory RNA sequences exert their function through interaction with proteins. Therefore, the identification of RNA-binding proteins is the key step in understanding the role of many RNA motifs. Here, we describe a straightforward method to identify RNA-binding proteins. In this approach, RNAs are immobilized on beads and incubated with protein lysates. After removing unbound fraction of proteins, the bound proteins are eluted by successive increasing of salt concentration. The lower the salt concentration, the lower is the binding affinity of a protein to the RNA. According to this principle, each elution fraction can contain a number of proteins which bind with similar affinity to the RNA. After gel electrophoretic separation and staining, each single protein band can be identified, isolated, and analyzed by mass spectrometry.


Asunto(s)
Proteínas de Unión al ARN/aislamiento & purificación , Cromatografía de Afinidad , Espectrometría de Masas , ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
18.
J Biochem ; 150(5): 553-62, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21821668

RESUMEN

NF-kappaB repressing factor (NRF) is a nuclear transcription factor that binds to a specific DNA sequence in NF-kappaB target promoters. Previous reports suggested that NRF interferes with the transcriptional activity of NF-kappaB binding sites through a direct interaction with NF-kappaB subunits. The aim of this study was to map specific NRF binding domains in the NF-kappaB proteins, p65 and p50. Our data demonstrate that NRF is able to interact with the p65 subunit and inhibit its transcription enhancing activity in reporter gene experiments. Using tandem affinity purifications (TAP), we show that NRF protein significantly binds to the endogenous p65, subunit but not to the p50 subunit. The selective binding activity of the NRF protein is consistently mediated by the N-terminal domain of NRF (Amino acids 1-380). Moreover, the Rel homology domain (RHD) of p65 is sufficient for binding to the N-terminal domain of NRF. Using detailed peptide mapping studies, we finally identify three peptide motifs in p65 RHD showing distinctive binding specificities for the NRF protein. According to the predicted structure of p65, all three peptide motifs align within an exposed region of p65 and might hint at promising targets for inhibitors.


Asunto(s)
Proteínas Represoras/metabolismo , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/metabolismo , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Secuencia de Aminoácidos , Células HeLa , Humanos , Datos de Secuencia Molecular , Unión Proteica , Factor de Transcripción ReIA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...