Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Top Companion Anim Med ; 60: 100845, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38184143

RESUMEN

Canine strongyloidosis by Strongyloides stercoralis is a parasitic disease emerging in Europe, which represents both a veterinary clinical issue and a public health challenge because of the zoonotic potential. The disease, not yet frequent in Europe, could induce severe clinical signs in dogs; thus, an early diagnosis and appropriate treatment are desirable. The aim of the present work is to retrospectively investigate the clinical and paraclinical findings in sick dogs naturally infected by S. stercoralis, with particular attention to ultrasound (US) changes at the gastrointestinal level. Twelve dogs were included in the study. The diagnosis was made by means of larval morphological identification on faecal samples and PCR. Most dogs presented with gastrointestinal signs; diarrhea and weight loss were the most common presenting complaint. Only one dog showed respiratory signs, associated to a parasitic cutaneous nodule. Hypoproteinaemia, anaemia, leucocytosis and an increase in alpha2-globulin fraction at serum protein electrophoresis were common (>50%) but not constant findings. The most reported US picture was a fluid-filled, distended, atonic small intestine mostly associated with altered wall layering, while the wall thickness commonly associated with chronic enteritis was only rarely reported. These changes, associated with other clinical and paraclinical alterations, could increase the suspicion of canine strongyloidosis and may direct clinicians to include strongyloidosis in the differential diagnosis of dogs with diarrhea. The histological examination at the intestinal level, available in five dogs, revealed the presence of parasites from the full-thickness biopsy, but not from the endoscopic biopsy. The critical points of diagnosis in clinical practice are also discussed.


Asunto(s)
Enfermedades de los Perros , Heces , Strongyloides stercoralis , Estrongiloidiasis , Animales , Perros , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/diagnóstico , Estrongiloidiasis/veterinaria , Estrongiloidiasis/diagnóstico , Masculino , Femenino , Estudios Retrospectivos , Heces/parasitología , Strongyloides stercoralis/aislamiento & purificación , Ultrasonografía/veterinaria , Diarrea/veterinaria , Diarrea/parasitología
2.
Parasitol Res ; 122(12): 2885-2890, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37735273

RESUMEN

Strongyloidiasis is a clinical issue both in humans and in dogs. Moreover, there are concerns about its zoonotic potential. We aimed to explore Strongyloides stercoralis epidemiology in Southern Italy in humans and dogs sharing the same environment in three different settings: (1) kennels (group K); (2) livestock farms (group L) and (3) agricultural farms (group A). For humans, a commercial ELISA test was used for screening. RT-PCR on faecal samples was done for people testing positive or equivocal at serology. On dog's faecal samples, Baermann test and RT-PCR were performed. A total of 145 dogs and 139 persons were tested. Based on faecal tests in dogs and serology in humans, a S. stercoralis positivity of 4.1% and 6.5% was revealed, respectively. The sites where cases were found were different for animals and humans. In dogs the highest positivity was in group K (6.7% against 2% and 0% in L and A). Differently, in humans the proportion of positive results was similar between the groups (p = 0.883). Fifty percent (3/6) of positive dogs were healthy; the other dogs presented weight loss and/or diarrhoea. ELISA-positive persons (n=9) were all in health, but abdominal pain (37.5%), urticaria (22.2%) and asthma (22.2%) were reported, resolving after treatment with oral ivermectin 200 µg/kg. RT-PCR performed on 13 human faecal samples resulted negative. These findings suggest that strongyloidiasis is present in humans and dogs in Southern Italy, and screening in larger cohorts would be needed for more accurate estimates.


Asunto(s)
Strongyloides stercoralis , Estrongiloidiasis , Animales , Perros , Humanos , Heces , Italia/epidemiología , Ivermectina/uso terapéutico , Estrongiloidiasis/diagnóstico , Estrongiloidiasis/epidemiología , Estrongiloidiasis/veterinaria
3.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499601

RESUMEN

Inherited retinal disorders (IRDs) affect millions of people worldwide and are a major cause of irreversible blindness. Therapies based on drugs, gene augmentation or transplantation approaches have been widely investigated and proposed. Among gene therapies for retinal degenerative diseases, the fast-evolving genome-editing CRISPR/Cas technology has emerged as a new potential treatment. The CRISPR/Cas system has been developed as a powerful genome-editing tool in ophthalmic studies and has been applied not only to gain proof of principle for gene therapies in vivo, but has also been extensively used in basic research to model diseases-in-a-dish. Indeed, the CRISPR/Cas technology has been exploited to genetically modify human induced pluripotent stem cells (iPSCs) to model retinal disorders in vitro, to test in vitro drugs and therapies and to provide a cell source for autologous transplantation. In this review, we will focus on the technological advances in iPSC-based cellular reprogramming and gene editing technologies to create human in vitro models that accurately recapitulate IRD mechanisms towards the development of treatments for retinal degenerative diseases.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Humanos , Edición Génica , Sistemas CRISPR-Cas/genética , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Terapia Genética
4.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886882

RESUMEN

Sleeping Beauty (SB) is the first DNA transposon employed for efficient transposition in vertebrate cells, opening new applications for genetic engineering and gene therapies. A transposon-based gene delivery system holds the favourable features of non-viral vectors and an attractive safety profile. Here, we employed SB to engineer HEK293 cells for optimizing the production of a chimpanzee Adenovector (chAd) belonging to the Human Mastadenovirus C species. To date, chAd vectors are employed in several clinical settings for infectious diseases, last but not least COVID-19. A robust, efficient and quick viral vector production could advance the clinical application of chAd vectors. To this aim, we firstly swapped the hAd5 E1 with chAd-C E1 gene by using the CRISPR/Cas9 system. We demonstrated that in the absence of human Ad5 E1, chimp Ad-C E1 gene did not support HEK293 survival. To improve chAd-C vector production, we engineered HEK293 cells to stably express the chAd-C precursor terminal protein (ch.pTP), which plays a crucial role in chimpanzee Adenoviral DNA replication. The results indicate that exogenous ch.pTP expression significantly ameliorate the packaging and amplification of recombinant chAd-C vectors thus, the engineered HEK293ch.pTP cells could represent a superior packaging cell line for the production of these vectors.


Asunto(s)
COVID-19 , Pan troglodytes , Adenoviridae/genética , Animales , Elementos Transponibles de ADN/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células HEK293 , Humanos , Pan troglodytes/genética
5.
J Exp Clin Cancer Res ; 40(1): 362, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782004

RESUMEN

BACKGROUND: Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes. METHODS: Data on the expression of NF-YA isoforms were extracted from the TCGA (The Cancer Genome Atlas) database of tumor prostate tissues and validated in prostate cell lines. Lentiviral transduction and CRISPR-Cas9 technology allowed the modulation of the expression of NF-YA splice variants in PCa cells. We characterized 3D cell cultures through in vitro assays and RNA-seq profilings. We used the rank-rank hypergeometric overlap approach to identify concordant/discordant gene expression signatures of NF-YAs/NF-YAl-overexpressing cells and human PCa patients. We performed in vivo studies in SHO-SCID mice to determine pathological and molecular phenotypes of NF-YAs/NF-YAl xenograft tumors. RESULTS: NF-YA depletion affects the tumorigenic potential of PCa cells in vitro and in vivo. Elevated NF-YAs levels are associated to aggressive PCa specimens, defined by Gleason Score and TNM classification. NF-YAl overexpression increases cell motility, while NF-YAs enhances cell proliferation in PCa 3D spheroids and xenograft tumors. The transcriptome of NF-YAs-spheroids has an extensive overlap with localized and metastatic human PCa signatures. According to PCa PAM50 classification, NF-YAs transcript levels are higher in LumB, characterized by poor prognosis compared to LumA and basal subtypes. A significant decrease in NF-YAs/NF-YAl ratio distinguishes PCa circulating tumor cells from cancer cells in metastatic sites, consistently with pro-migratory function of NF-YAl. Stratification of patients based on NF-YAs expression is predictive of clinical outcome. CONCLUSIONS: Altogether, our results indicate that the modulation of NF-YA isoforms affects prostate pathophysiological processes and contributes to cancer-relevant phenotype, in vitro and in vivo. Evaluation of NF-YA splicing may represent a new molecular strategy for risk assessment of PCa patients.


Asunto(s)
Empalme Alternativo/genética , Factor de Unión a CCAAT/metabolismo , Edición Génica/métodos , Neoplasias de la Próstata/genética , Animales , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Am J Hum Genet ; 108(2): 295-308, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508235

RESUMEN

Retinitis pigmentosa (RP) is a group of progressive retinal degenerations of mostly monogenic inheritance, which cause blindness in about 1:3,500 individuals worldwide. Heterozygous variants in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP). Among these, missense variants at C-terminal proline 347, such as p.Pro347Ser, cause severe adRP recurrently in European affected individuals. Here, for the first time, we use CRISPR/Cas9 to selectively target the p.Pro347Ser variant while preserving the wild-type RHO allele in vitro and in a mouse model of adRP. Detailed in vitro, genomic, and biochemical characterization of the rhodopsin C-terminal editing demonstrates a safe downregulation of p.Pro347Ser expression leading to partial recovery of photoreceptor function in a transgenic mouse model treated with adeno-associated viral vectors. This study supports the safety and efficacy of CRISPR/Cas9-mediated allele-specific editing and paves the way for a permanent and precise correction of heterozygous variants in dominantly inherited retinal diseases.


Asunto(s)
Edición Génica , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia , Rodopsina/genética , Alelos , Animales , Sistemas CRISPR-Cas , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Electrorretinografía , Terapia Genética , Humanos , Mutación INDEL , Ratones , Ratones Transgénicos , Mutación Missense , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Retina/fisiopatología , Rodopsina/metabolismo
8.
J Med Genet ; 57(7): 437-444, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31857428

RESUMEN

Retinal diseases (RD) include inherited retinal dystrophy (IRD), for example, retinitis pigmentosa and Leber's congenital amaurosis, or multifactorial forms, for example, age-related macular degeneration (AMD). IRDs are clinically and genetically heterogeneous in nature. To date, more than 200 genes are known to cause IRDs, which perturb the development, function and survival of rod and cone photoreceptors or retinal pigment epithelial cells. Conversely, AMD, the most common cause of blindness in the developed world, is an acquired disease of the macula characterised by progressive visual impairment. To date, available therapeutic approaches for RD include nutritional supplements, neurotrophic factors, antiangiogenic drugs for wet AMD and gene augmentation/interference strategy for IRDs. However, these therapies do not aim at correcting the genetic defect and result in inefficient and expensive treatments. The genome editing technology based on clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) and an RNA that guides the Cas protein to a predetermined region of the genome, represents an attractive strategy to tackle IRDs without available cure. Indeed, CRISPR/Cas system can permanently and precisely replace or remove genetic mutations causative of a disease, representing a molecular tool to cure a genetic disorder. In this review, we will introduce the mechanism of CRISPR/Cas system, presenting an updated panel of Cas variants and delivery systems, then we will focus on applications of CRISPR/Cas genome editing in the retina, and, as emerging treatment options, in patient-derived induced pluripotent stem cells followed by transplantation of retinal progenitor cells into the eye.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Transferencia de Gen/tendencias , Degeneración Macular/terapia , Enfermedades de la Retina/terapia , Edición Génica/métodos , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Degeneración Macular/genética , Atrofia Óptica Hereditaria de Leber/genética , Atrofia Óptica Hereditaria de Leber/terapia , Retina/patología , Retina/trasplante , Enfermedades de la Retina/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/terapia
9.
Theranostics ; 9(2): 436-448, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809285

RESUMEN

Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL). Here we investigated the combination of this MSC-based approach with the administration of a paclitaxel (PTX)-based chemotherapy to improve the potential of the treatment, also accounting for a possible resistance onset. Methods: Starting from the BXPC3 cell line, we generated and profiled a TRAIL-resistant model of pancreatic cancer, testing the impact of the combined treatment in vitro with specific cytotoxicity and metabolic assays. We then challenged the rationale in a subcutaneous mouse model of pancreatic cancer, assessing its effect on tumour size accounting stromal and parenchymal organization. Results: PTX was able to restore pancreatic cancer sensitivity to MSC-delivered TRAIL by reverting its pro-survival gene expression profile. The two compounds cooperate both in vitro and in vivo and the combined treatment resulted in an improved cytotoxicity on tumour cells. Conclusion: In summary, this study uncovers the potential of a combinatory approach between MSC-delivered TRAIL and PTX, supporting the combination of cell-based products and conventional chemotherapeutics as a tool to improve the efficacy of the treatments, also addressing possible mechanisms of resistance.


Asunto(s)
Adenocarcinoma/terapia , Antineoplásicos/administración & dosificación , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Combinada/métodos , Paclitaxel/administración & dosificación , Neoplasias Pancreáticas/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones Desnudos , Modelos Teóricos , Trasplante de Neoplasias , Trasplante Heterólogo , Resultado del Tratamiento
10.
Sci Rep ; 9(1): 1788, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30742129

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is still one of the most aggressive adult cancers with an unacceptable prognosis. For this reason novel therapies accounting for PDAC peculiarities, such as the relevant stromal reaction, are urgently needed. Here adipose mesenchymal stromal/stem cells (AD-MSC) have been armed to constantly release a soluble trimeric and multimeric variant of the known anti-cancer TNF-related apoptosis-inducing ligand (sTRAIL). This cancer gene therapy strategy was in vitro challenged demonstrating that sTRAIL was thermally stable and able to induce apoptosis in the PDAC lines BxPC-3, MIA PaCa-2 and against primary PDAC cells. sTRAIL released by AD-MSC relocated into the tumor stroma was able to significantly counteract tumor growth in vivo with a significant reduction in tumor size, in cytokeratin-7+ cells and by an anti-angiogenic effect. In parallel, histology on PDAC specimens form patients (n = 19) was performed to investigate the levels of TRAIL DR4, DR5 and OPG receptors generating promising insights on the possible clinical translation of our approach. These results indicate that adipose MSC can very efficiently vehicle a novel TRAIL variant opening unexplored opportunities for PDAC treatment.


Asunto(s)
Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/terapia , Terapia Genética , Células Madre Mesenquimatosas/metabolismo , Neoplasias Pancreáticas/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Adenocarcinoma/patología , Animales , Apoptosis , Carcinoma Ductal Pancreático/patología , Humanos , Ratones , Neoplasias Pancreáticas/patología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Cancer Gene Ther ; 26(1-2): 11-16, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29955091

RESUMEN

Cellular therapies based on mesenchymal stromal/stem cells (MSC) are promising strategies in regenerative medicine and oncology. Despite encouraging results, there is still some level of concerns on inoculating MSC in cancer patients. To face this issue, one possibility resides in engineering MSC by incorporating a suicide gene in order to control their fate once infused. Strategies based on Herpes Simplex Virus Thymidine Kinase (HSV-TK) and the Cytosine Deaminase genes have been developed and more recently a novel suicide gene, namely, iCasp9, has been proposed. This approach is based on a variant of human Caspase9 that binds with high affinity to a synthetic, bioinert small molecule (AP20187) leading to cell death. Based on this technology so far marginally applied to MSC, we tested the suitability of iCasp9 suicide strategy in MSC to further increase their safety. MSC have been transfected by a lentiviral vector carrying iCasp9 gene and then tested for viability after AP20187 treatment in comparison with mock-transfected cells. Moreover, accounting our anti-tumor approaches based on MSC expressing potent anti-cancer ligand TNF-Related Apoptosis-Inducing Ligand (TRAIL), we generated adipose MSC co-expressing iCasp9 and TRAIL successfully targeting an aggressive sarcoma type. These data show that anti-cancer and suicide mechanisms can coexist without affecting cells performance and hampering the tumoricidal activity mediated by TRAIL. In conclusion, this study originally indicates the suitability of combining a MSC-based anti-cancer gene approach with iCasp9 demonstrating efficiency and specificity.


Asunto(s)
Caspasa 9/genética , Genes Transgénicos Suicidas , Terapia Genética , Trasplante de Células Madre Mesenquimatosas , Neoplasias/terapia , Línea Celular Tumoral , Células HEK293 , Humanos
12.
Methods Mol Biol ; 1834: 59-74, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30324436

RESUMEN

CRISPR/Cas9 is an efficient tool to knock down specific genes in various organisms. In this chapter, we describe how to assess knockdown of human rhodopsin (RHO) gene carrying the P23H mutation in vitro, in engineered HeLa cells, and in vivo, in P23H RHO transgenic mice. To this aim, we report two molecular assays: site-specific PCR on P23H RHO cells treated with CRISPR/Cas9 and Western blotting analysis on retinal cells prepared from P23H RHO transgenic mice electroporated with CRISPR/Cas9 and GFP plasmids.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Retina/citología , Retina/metabolismo , Animales , Clonación Molecular , Biología Computacional/métodos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Técnicas de Silenciamiento del Gen , Marcación de Gen , Células HeLa , Humanos , Ratones , Reacción en Cadena de la Polimerasa , ARN Guía de Kinetoplastida , Rodopsina/genética
14.
Mol Ther ; 26(11): 2592-2603, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30122422

RESUMEN

Deficiency of basement membrane heterotrimeric laminin 332 component, coded by LAMA3, LAMB3, and LAMC2 genes, causes junctional epidermolysis bullosa (JEB), a severe skin adhesion defect. Herein, we report the first application of CRISPR/Cas9-mediated homology direct repair (HDR) to in situ restore LAMB3 expression in JEB keratinocytes in vitro and in immunodeficient mice transplanted with genetically corrected skin equivalents. We packaged an adenovector carrying Cas9/guide RNA (gRNA) tailored to the intron 2 of LAMB3 gene and an integration defective lentiviral vector bearing a promoterless quasi-complete LAMB3 cDNA downstream a splice acceptor site and flanked by homology arms. Upon genuine HDR, we exploited the in vitro adhesion advantage of laminin 332 production to positively select LAMB3-expressing keratinocytes. HDR and restored laminin 332 expression were evaluated at single-cell level. Notably, monoallelic-targeted integration of LAMB3 cDNA was sufficient to in vitro recapitulate the adhesive property, the colony formation typical of normal keratinocytes, as well as their cell growth. Grafting of genetically corrected skin equivalents onto immunodeficient mice showed a completely restored dermal-epidermal junction. This study provides evidence for efficient CRISPR/Cas9-mediated in situ restoration of LAMB3 expression, paving the way for ex vivo clinical application of this strategy to laminin 332 deficiency.


Asunto(s)
Sistemas CRISPR-Cas/genética , Moléculas de Adhesión Celular/genética , Epidermólisis Ampollosa de la Unión/terapia , Terapia Genética , Animales , Membrana Basal/patología , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/deficiencia , Reparación del ADN/genética , ADN Complementario/genética , Epidermólisis Ampollosa de la Unión/genética , Epidermólisis Ampollosa de la Unión/patología , Regulación de la Expresión Génica , Humanos , Intrones/genética , Queratinocitos/metabolismo , Queratinocitos/patología , Laminina/genética , Lentivirus/genética , Ratones , Mutación , Edición de ARN/genética , Kalinina
15.
Cell Rep ; 22(11): 3006-3020, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539427

RESUMEN

Heterotypic cellular and molecular interactions in the tumor microenvironment (TME) control cancer progression. Here, we show that CD1d-restricted invariant natural killer (iNKT) cells control prostate cancer (PCa) progression by sculpting the TME. In a mouse PCa model, iNKT cells restrained the pro-angiogenic and immunosuppressive capabilities of tumor-infiltrating immune cells by reducing pro-angiogenic TIE2+, M2-like macrophages (TEMs), and sustaining pro-inflammatory M1-like macrophages. iNKT cells directly contacted macrophages in the PCa stroma, and iNKT cell transfer into tumor-bearing mice abated TEMs, delaying tumor progression. iNKT cells modulated macrophages through the cooperative engagement of CD1d, Fas, and CD40, which promoted selective killing of M2-like and survival of M1-like macrophages. Human PCa aggressiveness associate with reduced intra-tumoral iNKT cells, increased TEMs, and expression of pro-angiogenic genes, underscoring the clinical significance of this crosstalk. Therefore, iNKT cells may control PCa through mechanisms involving differential macrophage modulation, which may be harnessed for therapeutically reprogramming the TME.


Asunto(s)
Antígenos CD40/metabolismo , Macrófagos/metabolismo , Células T Asesinas Naturales/inmunología , Neoplasias de la Próstata/genética , Animales , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
16.
J Vis Exp ; (131)2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29364270

RESUMEN

The Sleeping Beauty (SB) transposon is a non-viral integrating system with proven efficacy for gene transfer and functional genomics. To optimize the SB transposon machinery, a transcriptionally regulated hyperactive transposase (SB100X) and T2-based transposon are employed. Typically, the transposase and transposon are provided transiently by plasmid transfection and SB100X expression is driven by a constitutive promoter. Here, we describe an efficient method to deliver the SB components to human cells that are resistant to several physical and chemical transfection methods, to control SB100X expression and stably integrate a gene of interest (GOI) through a "cut and paste" SB mechanism. The expression of hyperactive transposase is tightly controlled by the Tet-ON system, widely used to control gene expression since 1992. The gene of interest is flanked by inverted repeats (IR) of the T2 transposon. Both SB components are packaged in integration defective lentiviral vectors transiently produced in HEK293T cells. Human cells, either cell lines or primary cells from human tissue, are in vitro transiently transduced with viral vectors. Upon addition of doxycycline (dox, tetracycline analog) into the culture medium, a fine-tuning of transposase expression is measured and results in a long-lasting integration of the gene of interest in the genome of the treated cells. This method is efficient and applicable to the cell line (e.g., HeLa cells) and primary cells (e.g., human primary keratinocytes), and thus represents a valuable tool for genetic engineering and therapeutic gene transfer.


Asunto(s)
Elementos Transponibles de ADN , Vectores Genéticos/genética , Lentivirus/genética , Transposasas/genética , Animales , Células HEK293 , Células HeLa , Humanos , Transfección
17.
Biochim Biophys Acta Gene Regul Mech ; 1860(11): 1138-1147, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28867298

RESUMEN

The dystrophin gene (DMD) is the largest gene in the human genome, mapping on the Xp21 chromosome locus. It spans 2.2Mb and accounts for approximately 0,1% of the entire human genome. Mutations in this gene cause Duchenne and Becker Muscular Dystrophy, X-linked Dilated Cardiomyopathy, and other milder muscle phenotypes. Beside the remarkable number of reports describing dystrophin gene expression and the pathogenic consequences of the gene mutations in dystrophinopathies, the full scenario of the DMD transcription dynamics remains however, poorly understood. Considering that the full transcription of the DMD gene requires about 16h, we have investigated the activity of RNA Polymerase II along the entire DMD locus within the context of specific chromatin modifications using a variety of chromatin-based techniques. Our results unveil a surprisingly powerful processivity of the RNA polymerase II along the entire 2.2Mb of the DMD locus with just one site of pausing around intron 52. We also discovered epigenetic marks highlighting the existence of four novel cis­DNA elements, two of which, located within intron 34 and exon 45, appear to govern the architecture of the DMD chromatin with implications on the expression levels of the muscle dystrophin mRNA. Overall, our findings provide a global view on how the entire DMD locus is dynamically transcribed by the RNA pol II and shed light on the mechanisms involved in dystrophin gene expression control, which can positively impact on the optimization of the novel ongoing therapeutic strategies for dystrophinopathies.


Asunto(s)
Distrofina/genética , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Adolescente , Adulto , Animales , Células Cultivadas , Niño , Preescolar , Epigénesis Genética/fisiología , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Mutación , Adulto Joven
19.
J Invest Dermatol ; 137(4): 836-844, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28027893

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects in type-VII collagen (C7), a protein encoded by the COL7A1 gene and essential for anchoring fibril formation at the dermal-epidermal junction. Gene therapy of RDEB is based on transplantation of autologous epidermal grafts generated from gene-corrected keratinocytes sustaining C7 deposition at the dermal-epidermal junction. Transfer of the COL7A1 gene is complicated by its very large size and repetitive sequence. This article reports a gene delivery approach based on the Sleeping beauty transposon, which allows integration of a full-length COL7A1 cDNA and secretion of C7 at physiological levels in RDEB keratinocytes without rearrangements or detrimental effects on their clonogenic potential. Skin equivalents derived from gene-corrected RDEB keratinocytes were tested in a validated preclinical model of xenotransplantation on immunodeficient mice, where they showed normal deposition of C7 at the dermal-epidermal junction and restoration of skin adhesion properties. These results indicate the feasibility and efficacy of a transposon-based gene therapy approach to RDEB.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/terapia , Predisposición Genética a la Enfermedad , Terapia Genética/métodos , Queratinocitos/trasplante , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Mutantes , Mutación , Distribución Aleatoria , Reproducibilidad de los Resultados , Medición de Riesgo , Trasplante Heterólogo/métodos , Resultado del Tratamiento
20.
Mol Ther Nucleic Acids ; 5(11): e389, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27874856

RESUMEN

The bacterial CRISPR/Cas system has proven to be an efficient tool for genetic manipulation in various organisms. Here we show the application of CRISPR-Cas9 technology to edit the human Rhodopsin (RHO) gene in a mouse model for autosomal dominant Retinitis Pigmentosa. We designed single or double sgRNAs to knock-down mutant RHO expression by targeting exon 1 of the RHO gene carrying the P23H dominant mutation. By delivering Cas9 and sgRNAs in a single plasmid we induced an efficient gene editing in vitro, in HeLa cells engineered to constitutively express the P23H mutant RHO allele. Similarly, after subretinal electroporation of the CRISPR/Cas9 plasmid expressing two sgRNAs into P23H RHO transgenic mice, we scored specific gene editing as well as significant reduction of the mutant RHO protein. Successful in vivo application of the CRISPR/Cas9 system confirms its efficacy as a genetic engineering tool in photoreceptor cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA