Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1425374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091504

RESUMEN

Vaccines containing tetanus-diphtheria antigens have been postulated to induce cross-reactive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which could protect against coronavirus disease (COVID-19). In this work, we investigated the capacity of Tetanus-diphtheria (Td) vaccine to prime existing T cell immunity to SARS-CoV-2. To that end, we first collected known SARS-CoV-2 specific CD8+ T cell epitopes targeted during the course of SARS-CoV-2 infection in humans and identified as potentially cross-reactive with Td vaccine those sharing similarity with tetanus-diphtheria vaccine antigens, as judged by Levenshtein edit distances (≤ 20% edits per epitope sequence). As a result, we selected 25 potentially cross-reactive SARS-CoV-2 specific CD8+ T cell epitopes with high population coverage that were assembled into a synthetic peptide pool (TDX pool). Using peripheral blood mononuclear cells, we first determined by intracellular IFNγ staining assays existing CD8+ T cell recall responses to the TDX pool and to other peptide pools, including overlapping peptide pools covering SARS-CoV-2 Spike protein and Nucleocapsid phosphoprotein (NP). In the studied subjects, CD8+ T cell recall responses to Spike and TDX peptide pools were dominant and comparable, while recall responses to NP peptide pool were less frequent and weaker. Subsequently, we studied responses to the same peptides using antigen-inexperienced naive T cells primed/stimulated in vitro with Td vaccine. Priming stimulations were carried out by co-culturing naive T cells with autologous irradiated peripheral mononuclear cells in the presence of Td vaccine, IL-2, IL-7 and IL-15. Interestingly, naive CD8+ T cells stimulated/primed with Td vaccine responded strongly and specifically to the TDX pool, not to other SARS-CoV-2 peptide pools. Finally, we show that Td-immunization of C57BL/6J mice elicited T cells cross-reactive with the TDX pool. Collectively, our findings support that tetanus-diphtheria vaccines can prime SARS-CoV-2 cross-reactive T cells and likely contribute to shape the T cell responses to the virus.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Reacciones Cruzadas , Epítopos de Linfocito T , SARS-CoV-2 , Humanos , Reacciones Cruzadas/inmunología , SARS-CoV-2/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Toxoide Tetánico/inmunología , Animales , Ratones , Femenino , Vacunas contra la COVID-19/inmunología , Masculino , Adulto , Glicoproteína de la Espiga del Coronavirus/inmunología , Persona de Mediana Edad
2.
Biomedicines ; 12(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39200349

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a public health concern due to infections with new SARS-CoV-2 variants. Therefore, finding effective preventive and therapeutic treatments against all SARS-CoV-2 variants is of great interest. In this study, we examined the capacity of eucalyptus essential oil (EEO) and eucalyptol (EOL) to prevent SARS-CoV-2 infection, using as a model SARS-CoV-2 Spike pseudotyped lentivirus (SARS-CoV-2 pseudovirus) and 293T cells transfected with human angiotensin-converting enzyme 2 (hACE2-293T cells). First, we determined the cytotoxicity of EEO and EOL using the MTT colorimetric assay, selecting non-cytotoxic concentrations ≤ 0.1% (v/v) for further analysis. Subsequently, we evaluated the capacity of EEO and EOL in cell cultures to preclude infection of hACE2-293T cells by SARS-CoV-2 pseudovirus, using a luciferase-based assay. We found that EEO and EOL significantly reduced SARS-CoV-2 pseudovirus infection, obtaining IC50 values of 0.00895% and 0.0042% (v/v), respectively. Likewise, EEO and EOL also reduced infection by vesicular stomatitis virus (VSV) pseudovirus, although higher concentrations were required. Hence, EEO and EOL may be able to inhibit SARS-CoV-2 infection, at least partially, through a Spike-independent pathway, supporting the implementation of aromatherapy with these agents as a cost-effective antiviral measure.

3.
Cells ; 13(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38994930

RESUMEN

B cell epitopes must be visible for recognition by cognate B cells and/or antibodies. Here, we studied that premise for known linear B cell epitopes that were collected from the Immune Epitope Database as being recognized by humans during microbial infections. We found that the majority of such known B cell epitopes are virus-specific linear B cell epitopes (87.96%), and most are located in antigens that remain enclosed in host cells and/or virus particles, preventing antibody recognition (18,832 out of 29,225 epitopes). Moreover, we estimated that only a minority (32.72%) of the virus-specific linear B cell epitopes that are found in exposed viral regions (e.g., the ectodomains of envelope proteins) are solvent accessible on intact antigens. Hence, we conclude that ample degradation/processing of viral particles and/or infected cells must occur prior to B cell recognition, thus shaping the B cell epitope repertoire.


Asunto(s)
Epítopos de Linfocito B , Epítopos de Linfocito B/inmunología , Humanos , Linfocitos B/inmunología , Antígenos Virales/inmunología , Proteolisis , Virus/inmunología
4.
Front Immunol ; 15: 1431351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989287

RESUMEN

Background: Polymerized allergoids conjugated with mannan represent a novel approach of allergen immunotherapy targeting dendritic cells. In this study, we aimed to determine the optimal dose of mannan-allergoid conjugates derived from grass pollen (Phleum pratense and Dactylis glomerata) administered via either the subcutaneous or sublingual route. Methods: A randomized, double-blind, placebo-controlled trial with a double-dummy design was conducted, involving 162 participants across 12 centers in Spain. Subjects were randomly allocated to one of nine different treatment groups, each receiving either placebo or active treatment at doses of 500, 1,000, 3,000, or 5,000 mTU/mL over four months. Each participant received five subcutaneous (SC) doses of 0.5 mL each, every 30 days, and a daily sublingual (SL) dose of 0.2 mL. Participants who received active treatment through SC, received placebo through SL. Participants who received active treatment through SL, received placebo SC. One Group, as control, received bot SC and SL placebo. The primary efficacy outcome was the improvement in titrated nasal provocation tests (NPT) at the end of the study compared to baseline. Secondary outcomes included specific antibody (IgG4, IgE) and cellular (IL-10 producing and regulatory T cell) responses. All adverse events and side reactions were recorded and assessed. Results: Post-treatment, the active groups showed improvements in NPT ranging from 33% to 53%, with the highest doses showing the greatest improvements regardless of the administration route. In comparison, the placebo group showed a 12% improvement. Significant differences over placebo were observed at doses of 3,000 mTU/mL (p=0.049 for SL, p=0.015 for SC) and 5,000 mTU/mL (p=0.011 for SL, p=0.015 for SC). A dose-dependent increase in IgG4 was observed following SC administration, and an increase in IL-10 producing cells for both routes of administration. No serious systemic or local adverse reactions were recorded, and no adrenaline was required. Conclusion: Grass pollen immunotherapy with mannan-allergoid conjugates was found to be safe and efficacious in achieving the primary outcome, whether administered via the subcutaneous or sublingual routes, at doses of 3,000 and 5,000 mTU/mL. Clinical trial registration: https://www.clinicaltrialsregister.eu/ctr-search (EudraCT), identifier 2014-005471-88; https://www.clinicaltrials.gov, identifier NCT02654223.


Asunto(s)
Alérgenos , Alergoides , Desensibilización Inmunológica , Mananos , Poaceae , Polen , Inmunoterapia Sublingual , Humanos , Masculino , Femenino , Adulto , Polen/inmunología , Mananos/administración & dosificación , Alérgenos/inmunología , Alérgenos/administración & dosificación , Inmunoterapia Sublingual/métodos , Inmunoterapia Sublingual/efectos adversos , Inyecciones Subcutáneas , Poaceae/inmunología , Persona de Mediana Edad , Desensibilización Inmunológica/métodos , Desensibilización Inmunológica/efectos adversos , Método Doble Ciego , Rinitis Alérgica Estacional/terapia , Rinitis Alérgica Estacional/inmunología , Administración Sublingual , Resultado del Tratamiento , Adulto Joven , Inmunoglobulina E/inmunología
5.
Front Immunol ; 14: 1235053, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675108

RESUMEN

Bacteria are well known to provide heterologous immunity against viral infections through various mechanisms including the induction of innate trained immunity and adaptive cross-reactive immunity. Cross-reactive immunity from bacteria to viruses is responsible for long-term protection and yet its role has been downplayed due the difficulty of determining antigen-specific responses. Here, we carried out a systematic evaluation of the potential cross-reactive immunity from selected bacteria known to induce heterologous immunity against various viruses causing recurrent respiratory infections. The bacteria selected in this work were Bacillus Calmette Guerin and those included in the poly-bacterial preparation MV130: Streptococcus pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Klebisella pneumoniae, Branhamella catarrhalis and Haemophilus influenzae. The virus included influenza A and B viruses, human rhinovirus A, B and C, respiratory syncytial virus A and B and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through BLAST searches, we first identified the shared peptidome space (identity ≥ 80%, in at least 8 residues) between bacteria and viruses, and subsequently predicted T and B cell epitopes within shared peptides. Interestingly, the potential epitope spaces shared between bacteria in MV130 and viruses are non-overlapping. Hence, combining diverse bacteria can enhance cross-reactive immunity. We next analyzed in detail the cross-reactive T and B cell epitopes between MV130 and influenza A virus. We found that MV130 contains numerous cross-reactive T cell epitopes with high population protection coverage and potentially neutralizing B cell epitopes recognizing hemagglutinin and matrix protein 2. These results contribute to explain the immune enhancing properties of MV130 observed in the clinic against respiratory viral infections.


Asunto(s)
COVID-19 , Virus de la Influenza A , Vacunas , Humanos , Antivirales , Epítopos de Linfocito B , SARS-CoV-2 , Bacterias
7.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175505

RESUMEN

Regulatory T cells (Tregs) control immune responses and are essential to maintain immune homeostasis and self-tolerance. Hence, it is no coincidence that autoimmune and chronic inflammatory disorders are associated with defects in Tregs. These diseases have currently no cure and are treated with palliative drugs such as immunosuppressant and immunomodulatory agents. Thereby, there is a great interest in developing medical interventions against these diseases based on enhancing Treg cell function and numbers. Here, we give an overview of Treg cell ontogeny and function, paying particular attention to mucosal Tregs. We review some notable approaches to enhance immunomodulation by Tregs with therapeutic purposes including adoptive Treg cell transfer therapy and discuss relevant clinical trials for inflammatory bowel disease. We next introduce ways to expand mucosal Tregs in vivo using microbiota and dietary products that have been the focus of clinical trials in various autoimmune and chronic-inflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T Reguladores , Humanos , Enfermedades Autoinmunes/terapia , Tolerancia Inmunológica , Inmunoterapia Adoptiva , Inmunomodulación
8.
Methods Mol Biol ; 2673: 1-14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258903

RESUMEN

Vaccines are the most successful and cost-effective medical interventions available to fight infectious diseases. They consist of biological preparations that are capable of stimulating the immune system to confer protective immunity against a particular harmful pathogen/agent. Vaccine design and development have evolved through the years. Early vaccines were obtained with little implementation of technology and in the absence of fundamental knowledge, representing a pure feat of human ingenuity. In contrast, modern vaccine development takes advantage of advances in technology and in our enhanced understanding of the immune system and host-pathogen interactions. Moreover, vaccine design has found novel applications beyond the prophylactic arena and there is an increasing interest in designing vaccines to treat human ailments like cancer and chronic inflammatory diseases. In this chapter, we focus on prophylactic vaccines against infectious diseases, providing an overview on immunology principles underlying immunization and on how vaccines work and are designed.


Asunto(s)
Vacunas , Humanos , Adyuvantes Inmunológicos , Vacunación , Desarrollo de Vacunas
9.
Methods Mol Biol ; 2673: 175-185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258914

RESUMEN

EPIPOX is a specialized online resource intended to facilitate the design of epitope-based vaccines against orthopoxviruses. EPIPOX is built upon a collection of T cell epitopes that are shared by eight pathogenic orthopoxviruses, including variola minor and major strains, monkeypox, cowpox, and vaccinia viruses. In EPIPOX, users can select T cell epitopes attending to the predicted binding to distinct major histocompatibility molecules (MHC) and according to various features that may have an impact on epitope immunogenicity. Among others, EPIPOX allows to discern epitopes by their structural location in the virion and the temporal expression of the counterpart antigens. Overall, the annotations in EPIPOX are optimized to facilitate the rational design of T cell epitope-based vaccines. In this chapter, we describe the main features of EPIPOX and exemplify its use, retrieving orthopoxvirus-specific T cell epitopes with features set to enhance their immunogenicity. EPIPOX is available for free public use at http://bio.med.ucm.es/epipox/ .


Asunto(s)
Orthopoxvirus , Humanos , Orthopoxvirus/genética , Epítopos de Linfocito T , Virus Vaccinia
10.
Methods Mol Biol ; 2673: 227-235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258918

RESUMEN

CD8 T cells recognize short peptides, more frequently of nine residues, presented by class I major histocompatibility complex (MHC I) molecules in the cell surface of antigen-presenting cells. These epitope peptides are loaded onto MHC I molecules in the endoplasmic reticulum, where they are shuttled from the cytosol by the transporter associated with antigen processing (TAP) as such or as N-terminal extended precursors of up to 16 residues. In this chapter, we describe the use of TAPREG, a tool for predicting TAP binding affinity that has been enhanced to identify potential CD8 T cell epitope precursors transported by TAP. TAPREG is available for free public use at http://imed.med.ucm.es/Tools/tapreg/ .


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Péptidos , Transportadoras de Casetes de Unión a ATP/metabolismo , Péptidos/química , Presentación de Antígeno , Proteínas de Transporte de Membrana , Antígenos de Histocompatibilidad Clase I/metabolismo
12.
Front Immunol ; 13: 951280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238292

RESUMEN

Activation of the integrin phagocytic receptors CR3 (αMß2, CD11b/CD18) and CR4 (αXß2, CD11c/CD18) requires Rap1 activation and RIAM function. RIAM controls integrin activation by recruiting Talin to ß2 subunits, enabling the Talin-Vinculin interaction, which in term bridges integrins to the actin-cytoskeleton. RIAM also recruits VASP to phagocytic cups and facilitates VASP phosphorylation and function promoting particle internalization. Using a CRISPR-Cas9 knockout approach, we have analyzed the requirement for RIAM, VASP and Vinculin expression in neutrophilic-HL-60 cells. All knockout cells displayed abolished phagocytosis that was accompanied by a significant and specific reduction in ITGAM (αM), ITGAX (αX) and ITGB2 (ß2) mRNA, as revealed by RT-qPCR. RIAM, VASP and Vinculin KOs presented reduced cellular F-actin content that correlated with αM expression, as treatment with the actin filament polymerizing and stabilizing drug jasplakinolide, partially restored αM expression. In general, the expression of αX was less responsive to jasplakinolide treatment than αM, indicating that regulatory mechanisms independent of F-actin content may be involved. The Serum Response Factor (SRF) was investigated as the potential transcription factor controlling αMß2 expression, since its coactivator MRTF-A requires actin polymerization to induce transcription. Immunofluorescent MRTF-A localization in parental cells was primarily nuclear, while in knockouts it exhibited a diffuse cytoplasmic pattern. Localization of FHL-2 (SRF corepressor) was mainly sub-membranous in parental HL-60 cells, but in knockouts the localization was disperse in the cytoplasm and the nucleus, suggesting RIAM, VASP and Vinculin are required to maintain FHL-2 close to cytoplasmic membranes, reducing its nuclear localization and inhibiting its corepressor activity. Finally, reexpression of VASP in the VASP knockout resulted in a complete reversion of the phenotype, as knock-ins restored αM expression. Taken together, our results suggest that RIAM, VASP and Vinculin, are necessary for the correct expression of αMß2 and αXß2 during neutrophilic differentiation in the human promyelocytic HL-60 cell line, and strongly point to an involvement of these proteins in the acquisition of a phagocytic phenotype.


Asunto(s)
Actinas , Talina , Proteínas Adaptadoras Transductoras de Señales , Moléculas de Adhesión Celular , Proteínas Co-Represoras , Células HL-60 , Humanos , Integrina alfaXbeta2 , Integrinas/metabolismo , Antígeno de Macrófago-1 , Proteínas de la Membrana , Proteínas de Microfilamentos , Neutrófilos/metabolismo , Fosfoproteínas , ARN Mensajero , Factor de Respuesta Sérica , Talina/genética , Talina/metabolismo , Vinculina/genética , Vinculina/metabolismo
13.
Sci Rep ; 12(1): 13739, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962028

RESUMEN

Prediction of B cell epitopes that can replace the antigen for antibody production and detection is of great interest for research and the biotech industry. Here, we developed a novel BLAST-based method to predict linear B cell epitopes. To that end, we generated a BLAST-formatted database upon a dataset of 62,730 known linear B cell epitope sequences and considered as a B cell epitope any peptide sequence producing ungapped BLAST hits to this database with identity ≥ 80% and length ≥ 8. We examined B cell epitope predictions by this method in tenfold cross-validations in which we considered various types of non-B cell epitopes, including 62,730 peptide sequences with verified negative B cell assays. As a result, we obtained values of accuracy, specificity and sensitivity of 72.54 ± 0.27%, 81.59 ± 0.37% and 63.49 ± 0.43%, respectively. In an independent dataset incorporating 503 B cell epitopes, this method reached accuracy, specificity and sensitivity of 74.85%, 99.20% and 50.50%, respectively, outperforming state-of-the-art methods to predict linear B cell epitopes. We implemented this BLAST-based approach to predict B cell epitopes at http://imath.med.ucm.es/bepiblast .


Asunto(s)
Epítopos de Linfocito B , Péptidos , Secuencia de Aminoácidos , Antígenos
14.
Biomedicines ; 10(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35625733

RESUMEN

The outbreak of SARS-CoV-2 leading to the declaration of the COVID-19 global pandemic has led to the urgent development and deployment of several COVID-19 vaccines. Many of these new vaccines, including those based on mRNA and adenoviruses, are aimed to generate neutralizing antibodies against the spike glycoprotein, which is known to bind to the receptor angiotensin converting enzyme 2 (ACE2) in host cells via the receptor-binding domain (RBD). Antibodies binding to this domain can block the interaction with the receptor and prevent viral entry into the cells. Additionally, these vaccines can also induce spike-specific T cells which could contribute to providing protection against the virus. However, the emergence of new SARS-CoV-2 variants can impair the immunity generated by COVID-19 vaccines if mutations occur in cognate epitopes, precluding immune recognition. Here, we evaluated the chance of five SARS-CoV-2 variants of concern (VOCs), Alpha, Beta, Gamma, Delta and Omicron, to escape spike-specific immunity induced by vaccines. To that end, we examined the impact of the SARS-CoV-2 variant mutations on residues located on experimentally verified spike-specific epitopes, deposited at the Immune Epitope Database, that are targeted by neutralizing antibodies or recognized by T cells. We found about 300 of such B cell epitopes, which were largely overlapping, and could be grouped into 54 B cell epitope clusters sharing ≥ 7 residues. Most of the B cell epitope clusters map in the RBD domain (39 out of 54) and 20%, 50%, 37%, 44% and 57% of the total are mutated in SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants, respectively. We also found 234 experimentally verified CD8 and CD4 T cell epitopes that were distributed evenly throughout the spike protein. Interestingly, in each SARS-CoV-2 VOC, over 87% and 79% of CD8 and CD4 T cell epitopes, respectively, are not mutated. These observations suggest that SARS-CoV-2 VOCs-particularly the Omicron variant-may be prone to escape spike-specific antibody immunity, but not cellular immunity, elicited by COVID-19 vaccines.

15.
Front Immunol ; 13: 807173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35126393

RESUMEN

Pemphigoid (Pg) diseases are a group of potentially fatal autoimmune mucocutaneous diseases. They have different clinical phenotypes, involving only the skin or multiple mucous membranes. They occur globally and frequently affect the elderly. The common marker among all variants is the presence of autoantibodies targeting the dermal-epidermal or mucosal-submucosal junctions, or basement membrane zone (BMZ). Four target antigens in the BMZ were studied. These included BPAG1, BPAG2 and subunits of α6 and ß4 human integrins. Our objective was to find a molecular basis for the global incidence of Pg diseases and a mechanism that will explain the vast differences in clinical phenotypes and outcomes. All the variants of Pg that were analyzed had a statistically significant association with HLA-DQß1*03:01 in ten countries on four continents. This explains the reason for global incidence. Prediction models discovered multiple peptides in each of the four antigens that serve as T cell epitopes. These T cell epitopes were shown to bind to HLA-DQß1*03:01. In addition, structure modelling demonstrated the peptide-HLA complex bound to the T cell receptor. These autoreactive T cells would stimulate B cells to produce specific anti-BMZ autoantibodies. Anti-BMZ autoantibodies with different specificities will produce different phenotypes, which will account for involvement of different tissues and organs in different molecules. The contribution this study makes is that it provides a molecular basis of why a similar disease occurs in different racial groups. Furthermore, it provides the basis for the production of autoantibodies with different specificities, which resultantly produces different phenotypes.


Asunto(s)
Susceptibilidad a Enfermedades , Penfigoide Ampolloso/diagnóstico , Penfigoide Ampolloso/etiología , Fenotipo , Alelos , Biomarcadores , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Frecuencia de los Genes , Genes MHC Clase II , Predisposición Genética a la Enfermedad , Salud Global , Humanos , Incidencia , Mutación , Penfigoide Ampolloso/epidemiología , Relación Estructura-Actividad
16.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34607353

RESUMEN

The COVID-19 pandemic has highlighted the need to come out with quick interventional solutions that can now be obtained through the application of different bioinformatics software to actively improve the success rate. Technological advances in fields such as computer modeling and simulation are enriching the discovery, development, assessment and monitoring for better prevention, diagnosis, treatment and scientific evidence generation of specific therapeutic strategies. The combined use of both molecular prediction tools and computer simulation in the development or regulatory evaluation of a medical intervention, are making the difference to better predict the efficacy and safety of new vaccines. An integrated bioinformatics pipeline that merges the prediction power of different software that act at different scales for evaluating the elicited response of human immune system against every pathogen is proposed. As a working example, we applied this problem solving protocol to predict the cross-reactivity of pre-existing vaccination interventions against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Biología Computacional , Simulación por Computador , Pandemias , SARS-CoV-2/inmunología , Programas Informáticos , COVID-19/epidemiología , COVID-19/prevención & control , Humanos
17.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830032

RESUMEN

The oral mucosa is a site of intense immune activity, where a large variety of immune cells meet to provide a first line of defense against pathogenic organisms. Interestingly, the oral mucosa is exposed to a plethora of antigens from food and commensal bacteria that must be tolerated. The mechanisms that enable this tolerance are not yet fully defined. Many works have focused on active immune mechanisms involving dendritic and regulatory T cells. However, epithelial cells also make a major contribution to tolerance by influencing both innate and adaptive immunity. Therefore, the tolerogenic mechanisms concurring in the oral mucosa are intertwined. Here, we review them systematically, paying special attention to the role of oral epithelial cells.


Asunto(s)
Inmunidad Adaptativa , Células Epiteliales/inmunología , Tolerancia Inmunológica , Inmunidad Mucosa , Mucosa Bucal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Humanos
18.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685724

RESUMEN

Prediction of linear B cell epitopes is of interest for the production of antigen-specific antibodies and the design of peptide-based vaccines. Here, we present BCEPS, a web server for predicting linear B cell epitopes tailored to select epitopes that are immunogenic and capable of inducing cross-reactive antibodies with native antigens. BCEPS implements various machine learning models trained on a dataset including 555 linearized conformational B cell epitopes that were mined from antibody-antigen protein structures. The best performing model, based on a support vector machine, reached an accuracy of 75.38% ± 5.02. In an independent dataset consisting of B cell epitopes retrieved from the Immune Epitope Database (IEDB), this model achieved an accuracy of 67.05%. In BCEPS, predicted epitopes can be ranked according to properties such as flexibility, accessibility and hydrophilicity, and with regard to immunogenicity, as judged by their predicted presentation by MHC II molecules. BCEPS also detects if predicted epitopes are located in ectodomains of membrane proteins and if they possess N-glycosylation sites hindering antibody recognition. Finally, we exemplified the use of BCEPS in the SARS-CoV-2 Spike protein, showing that it can identify B cell epitopes targeted by neutralizing antibodies.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Bases de Datos Factuales , Epítopos de Linfocito B/química , SARS-CoV-2 , Animales , Antígenos , COVID-19/inmunología , Reacciones Cruzadas , Glicosilación , Antígenos de Histocompatibilidad Clase II , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Internet , Aprendizaje Automático , Ratones , Péptidos/química , Dominios Proteicos , Proteínas/química , Reproducibilidad de los Resultados , Programas Informáticos , Glicoproteína de la Espiga del Coronavirus/química
19.
BMC Med ; 19(1): 237, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34610833

RESUMEN

BACKGROUND: The diagnosis of coeliac disease (CD) in individuals that have started a gluten-free diet (GFD) without an adequate previous diagnostic work-out is a challenge. Several immunological assays such as IFN-γ ELISPOT have been developed to avoid the need of prolonged gluten challenge to induce the intestinal damage. We aimed to evaluate the diagnostic accuracy of activated gut-homing CD8+ and TCRγδ+ T cells in blood after a 3-day gluten challenge and to compare it with the performance of IFN-γ ELISPOT in a HLA-DQ2.5 subsample. METHODS: A total of 22 CD patients and 48 non-CD subjects, all of them following a GFD, underwent a 3-day 10-g gluten challenge. The percentage of two T cell subsets (CD8+ CD103+ ß7hi CD38+/total CD8+ and TCRγδ+ CD103+ ß7hi CD38+/total TCRγδ+) in fresh peripheral blood drawn baseline and 6 days after the challenge was determined by flow cytometry. IFN-γ ELISPOT assays were also performed in HLA-DQ2.5 participants. ROC curve analysis was used to assess the diagnostic performance of the CD8+ T cell response and IFN-γ ELISPOT. RESULTS: Significant differences between the percentage of the two studied subsets of CD8+ and TCRγδ+ cells at days 0 and 6 were found only when considering CD patients (p < 10-3 vs. non-CD subjects). Measuring activated CD8+ T cells provided accurate CD diagnosis with 95% specificity and 97% sensitivity, offering similar results than IFN-γ ELISPOT. CONCLUSIONS: The results provide a highly accurate blood test for CD diagnosis in patients on a GFD of easy implementation in daily clinical practice.


Asunto(s)
Enfermedad Celíaca , Dieta Sin Gluten , Linfocitos T CD8-positivos , Enfermedad Celíaca/diagnóstico , Citometría de Flujo , Glútenes , Humanos
20.
Cells ; 10(9)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34571943

RESUMEN

Human rhinovirus (RV) is the most common cause of upper respiratory infections and exacerbations of asthma. In this work, we selected 14 peptides (6 from RV A and 8 from RV C) encompassing potential CD4 T cell epitopes. Peptides were selected for being highly conserved in RV A and C serotypes and predicted to bind to multiple human leukocyte antigen class II (HLA II) molecules. We found positive T cell recall responses by interferon gamma (IFNγ)-ELISPOT assays to eight peptides, validating seven of them (three from RV A and four from RV C) as CD4 T cell epitopes through intracellular cytokine staining assays. Additionally, we verified their promiscuous binding to multiple HLA II molecules by quantitative binding assays. According to their experimental HLA II binding profile, the combination of all these seven epitopes could be recognized by >95% of the world population. We actually determined IFNγ responses to a pool encompassing these CD4 T cell epitopes by intracellular cytokine staining, finding positive responses in 29 out of 30 donors. The CD4 T cell epitopes identified in this study could be key to monitor RV infections and to develop peptide-based vaccines against most RV A and C serotypes.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Fragmentos de Péptidos/inmunología , Infecciones por Picornaviridae/inmunología , Rhinovirus/inmunología , Proteínas Virales/inmunología , Adulto , Femenino , Humanos , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Infecciones por Picornaviridae/virología , Rhinovirus/aislamiento & purificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...